
ruffus Documentation
Release 2.6.3

Leo Goodstadt

April 21, 2015

CONTENTS

1 Start Here: 1
1.1 Installation . 1
1.2 Ruffus Manual: List of Chapters and Example code . 2
1.3 Chapter 1: An introduction to basic Ruffus syntax . 4
1.4 Chapter 2: Transforming data in a pipeline with @transform . 9
1.5 Chapter 3: More on @transform-ing data . 11
1.6 Chapter 4: Creating files with @originate . 16
1.7 Chapter 5: Understanding how your pipeline works with pipeline_printout(...) 18
1.8 Chapter 6: Running Ruffus from the command line with ruffus.cmdline 21
1.9 Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(...) 25
1.10 Chapter 8: Specifying output file names with formatter() and regex() 29
1.11 Chapter 9: Preparing directories for output with @mkdir() . 37
1.12 Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions 39
1.13 Chapter 11: Pipeline topologies and a compendium of Ruffus decorators 44
1.14 Chapter 12: Splitting up large tasks / files with @split . 47
1.15 Chapter 13: @merge multiple input into a single result . 51
1.16 Chapter 14: Multiprocessing, drmaa and Computation Clusters 53
1.17 Chapter 15: Logging progress through a pipeline . 56
1.18 Chapter 16: @subdivide tasks to run efficiently and regroup with @collate 59
1.19 Chapter 17: @combinations, @permutations and all versus all @product 62
1.20 Chapter 18: Turning parts of the pipeline on and off at runtime with @active_if 69
1.21 Chapter 19: Signal the completion of each stage of our pipeline with @posttask 71
1.22 Chapter 20: Manipulating task inputs via string substitution using inputs() and add_inputs() 72
1.23 Chapter 21: Esoteric: Generating parameters on the fly with @files 75
1.24 Chapter 22: Esoteric: Running jobs in parallel without files using @parallel 78
1.25 Chapter 23: Esoteric: Writing custom functions to decide which jobs are up to date with

@check_if_uptodate . 79
1.26 Appendix 1: Flow Chart Colours with pipeline_printout_graph(...) 80
1.27 Appendix 2: How dependency is checked . 81
1.28 Appendix 3: Exceptions thrown inside pipelines . 83
1.29 Appendix 4: Names exported from Ruffus . 85
1.30 Appendix 5: @files: Deprecated syntax . 87
1.31 Appendix 6: @files_re: Deprecated syntax using regular expressions 90
1.32 Chapter 1: Python Code for An introduction to basic Ruffus syntax 92
1.33 Chapter 1: Python Code for Transforming data in a pipeline with @transform 93
1.34 Chapter 3: Python Code for More on @transform-ing data . 95
1.35 Chapter 4: Python Code for Creating files with @originate . 100
1.36 Chapter 5: Python Code for Understanding how your pipeline works with pipeline_printout(...) . . . 101
1.37 Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(...) . . . 105
1.38 Chapter 8: Python Code for Specifying output file names with formatter() and regex() 107

i

1.39 Chapter 9: Python Code for Preparing directories for output with @mkdir() 110
1.40 Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions 112
1.41 Chapter 12: Python Code for Splitting up large tasks / files with @split 113
1.42 Chapter 13: Python Code for @merge multiple input into a single result 115
1.43 Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters 117
1.44 Chapter 15: Python Code for Logging progress through a pipeline 120
1.45 Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate 121
1.46 Chapter 17: Python Code for @combinations, @permutations and all versus all @product 124
1.47 Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and

add_inputs() . 128
1.48 Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files 132
1.49 Appendix 1: Python code for Flow Chart Colours with pipeline_printout_graph(...) 137

2 Overview: 143
2.1 Cheat Sheet . 143
2.2 Pipeline functions . 145
2.3 drmaa functions . 151
2.4 Installation . 154
2.5 Design & Architecture . 155
2.6 Major Features added to Ruffus . 160

= “/new/output/path”)160subsubsection*.260
2.7 Fixed Bugs . 174
2.8 New Object orientated syntax for Ruffus in Version 2.6 . 174
2.9 Worked Example for New Object orientated syntax for Ruffus in Version 2.6 179
2.10 Python Code for: New Object orientated syntax for Ruffus in Version 2.6 183
2.11 Where I see Ruffus going . 187
2.12 In up coming release: . 187
2.13 Future Changes to Ruffus . 188
2.14 Planned Improvements to Ruffus . 193
2.15 Implementation Tips . 195
2.16 Implementation notes . 197
2.17 FAQ . 208
2.18 Glossary . 222
2.19 Hall of Fame: User contributed flowcharts . 223
2.20 Why Ruffus? . 227

3 Examples 229
3.1 Construction of a simple pipeline to run BLAST jobs . 229
3.2 Part 2: A slightly more practical pipeline to run blasts jobs . 233
3.3 Ruffus code . 237
3.4 Ruffus code . 238
3.5 Example code for FAQ Good practices: “What is the best way of handling data in file pairs (or triplets

etc.)?” . 242

4 Reference: 245
4.1 Decorators . 245
4.2 Modules: . 268

5 Indices and tables 277

Python Module Index 279

ii

CHAPTER

ONE

START HERE:

1.1 Installation

Ruffus is a lightweight python module for building computational pipelines.

Note: Ruffus requires Python 2.6 or higher or Python 3.0 or higher

1.1.1 The easy way

Ruffus is available as an easy-install -able package on the Python Package Index.

sudo pip install ruffus --upgrade

This may also work for older installations:

easy_install -U ruffus

See below if eady_install is missing

1.1.2 The most up-to-date code:

• Download the latest sources or

• Check out the latest code from Google using git:

git clone https://bunbun68@code.google.com/p/ruffus/ .

• Bleeding edge Ruffus development takes place on github:

git clone git@github.com:bunbun/ruffus.git .

• To install after downloading, change to the , type:

python ./setup.py install

1.1.3 Prequisites

1.1.4 Installing easy_install

If your system doesn’t have easy_install, you can install one using a package manager, for example:

1

http://peak.telecommunity.com/DevCenter/EasyInstall
http://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/ruffus

ruffus Documentation, Release 2.6.3

ubuntu/linux mint
$ sudo apt-get install python-setuptools
$ or sudo yum install python-setuptools

or manually:

sudo curl http://peak.telecommunity.com/dist/ez_setup.py | python

or manually:

wget peak.telecommunity.com/dist/ez_setup.py
sudo python ez_setup.py

1.1.5 Installing pip

If Pip is missing:

$ sudo easy_install -U pip

1.1.6 Graphical flowcharts The most up-to-date code:

Ruffus relies on the dot programme from Graphviz (“Graph visualisation”) to make pretty flowchart
representations of your pipelines in multiple graphical formats (e.g. png, jpg). The crossplatform
Graphviz package can be downloaded here for Windows,

Linux, Macs and Solaris. For Fedora, try

yum list 'graphviz*'

For ubuntu / Debian, try

sudo apt-get install graphviz

1.2 Ruffus Manual: List of Chapters and Example code

Download as pdf.

• Chapter 1: An introduction to basic Ruffus syntax

• Chapter 2: Transforming data in a pipeline with @transform

• Chapter 3: More on @transform-ing data

• Chapter 4: Creating files with @originate

• Chapter 5: Understanding how your pipeline works with pipeline_printout()

• Chapter 6: Running Ruffus from the command line with ruffus.cmdline

• Chapter 7: Displaying the pipeline visually with pipeline_printout_graph()

• Chapter 8: Specifying output file names with formatter() and regex()

• Chapter 9: Preparing directories for output with @mkdir

• Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions

• Chapter 11: Pipeline topologies and a compendium of Ruffus decorators

2 Chapter 1. Start Here:

http://www.graphviz.org/
http://www.graphviz.org/Download.php

ruffus Documentation, Release 2.6.3

• Chapter 12: Splitting up large tasks / files with @split

• Chapter 13: @merge multiple input into a single result

• Chapter 15: Logging progress through a pipeline

• Chapter 14: Multiprocessing, drmaa and Computation Clusters

• Chapter 16: @subdivide tasks to run efficiently and regroup with @collate

• Chapter 17: @combinations, @permutations and all versus all @product

• Chapter 18: Turning parts of the pipeline on and off at runtime with @active_if

• Chapter 20: Manipulating task inputs via string substitution with inputs() and add_inputs()

• Chapter 19: Signal the completion of each stage of our pipeline with @posttask

• Chapter 21: Esoteric: Generating parameters on the fly with @files

• Chapter 22: Esoteric: Running jobs in parallel without files using @parallel

• Chapter 23: Esoteric: Writing custom functions to decide which jobs are up to date with
@check_if_uptodate

• Appendix 1 Flow Chart Colours with pipeline_printout_graph

• Appendix 2 Under the hood: How dependency works

• Appendix 3 Exceptions thrown inside pipelines

• Appendix 4 Names (keywords) exported from Ruffus

• Appendix 5: Legacy and deprecated syntax @files

• Appendix 6: Legacy and deprecated syntax @files_re

Ruffus Manual: List of Example Code for Each Chapter:

• Chapter 1: Python Code for An introduction to basic Ruffus syntax

• Chapter 1: Python Code for Transforming data in a pipeline with @transform

• Chapter 3: Python Code for More on @transform-ing data

• Chapter 4: Python Code for Creating files with @originate

• Chapter 5: Python Code for Understanding how your pipeline works with pipeline_printout(...)

• Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(...)

• Chapter 8: Python Code for Specifying output file names with formatter() and regex()

• Chapter 9: Python Code for Preparing directories for output with @mkdir()

• Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions

• Chapter 12: Python Code for Splitting up large tasks / files with @split

• Chapter 13: Python Code for @merge multiple input into a single result

• Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters

• Chapter 15: Python Code for Logging progress through a pipeline

• Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate

• Chapter 17: Python Code for @combinations, @permutations and all versus all @product

• Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and add_inputs()

1.2. Ruffus Manual: List of Chapters and Example code 3

ruffus Documentation, Release 2.6.3

• Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files

1.3 Chapter 1: An introduction to basic Ruffus syntax

See also:

• Manual Table of Contents

1.3.1 Overview

Computational pipelines transform your data in stages until the final result is produced. One easy way to
understand pipelines is by imagining your data flowing across a series of pipes until it reaches its final
destination. Even quite complicated processes can be broken into simple stages. Of course, it helps to
visualise the whole process.

Ruffus is a way of automating the plumbing in your pipeline: You supply the python functions which
perform the data transformation, and tell Ruffus how these pipeline task functions are connected up.
Ruffus will make sure that the right data flows down your pipeline in the right way at the right time.

Note: Ruffus refers to each stage of your pipeline as a task.

1.3.2 Importing Ruffus

The most convenient way to use Ruffus is to import the various names directly:

from ruffus import *

This will allow Ruffus terms to be used directly in your code. This is also the style we have adopted for
this manual.

If any of these clash with names in your code, you can use qualified names instead:

import ruffus

ruffus.pipeline_printout("...")

Ruffus uses only standard python syntax.

There is no need to install anything extra or to have your script “preprocessed” to run your pipeline.

1.3.3 Ruffus decorators

To let Ruffus know that which python functions are part of your pipeline, they need to be tagged or
annotated using Ruffus decorators .

Decorators have been part of the Python language since version 2.4. Common examples from the standard
library include @staticmethod and classmethod.

decorators start with a @ prefix, and take a number of parameters in parenthesis, much like in a function
call.

4 Chapter 1. Start Here:

https://docs.python.org/2/glossary.html#term-decorator
https://docs.python.org/2/glossary.html#term-decorator
https://docs.python.org/2/library/functions.html#staticmethod
https://docs.python.org/2/library/functions.html#classmethod
https://docs.python.org/2/glossary.html#term-decorator

ruffus Documentation, Release 2.6.3

decorators are placed before a normal python function.

Multiple decorators can be stacked as necessary in whichever order:

@follows(first_task)
@follows(another_task)
@originate(range(5))
def second_task():

""

Ruffus decorators do not otherwise alter the underlying function. These can still be called normally.

1.3.4 Your first Ruffus pipeline

1. Write down the file names

Ruffus is designed for data moving through a computational pipeline as a series of files.

It is also possible to use Ruffus pipelines without using intermediate data files but for your first efforts, it
is probably best not to subvert its canonical design.

The first thing when designing a new Ruffus pipeline is to sketch out the set of file names for the pipeline
on paper:

Here we have a number of DNA sequence files (*.fasta)

1. mapped to a genome (*.sam), and

2. compressed (*.bam) before being

3. summarised statistically (*.statistics)

The first striking thing is that all of the files following the same consistent naming scheme.

Note: The most important part of a Ruffus pipeline is to have a consistent naming scheme for your files.

This allows you to build sane pipelines.

In this case, each of the files at the same stage share the same file extension, e.g. (.sam). This is
usually the simplest and most sensible choice. (We shall see in later chapters that Ruffus supports more
complicated naming patterns so long as they are consistent.)

1.3. Chapter 1: An introduction to basic Ruffus syntax 5

https://docs.python.org/2/glossary.html#term-decorator
https://docs.python.org/2/glossary.html#term-decorator

ruffus Documentation, Release 2.6.3

2. Write the python functions for each stage

Next, we can sketch out the python functions which do the actual work for the pipeline.

Note:
1. These are normal python functions with the important proviso that

(a) The first parameter contains the Input (file names)

(b) The second parameter contains the Output (file names)

You can otherwise supply as many parameters as is required.

2. Each python function should only take a Single Input at a time

All the parallelism in your pipeline should be handled by Ruffus. Make sure each
function analyses one thing at a time.

Ruffus refers to a pipelined function as a task.

The code for our three task functions look something like:

#
STAGE 1 fasta->sam
#
def map_dna_sequence(input_file, # 1st parameter is Input

output_file): # 2nd parameter is Output
"""
Sketch of real mapping function
We can do the mapping ourselves

or call some other programme:
os.system("stampy %s %s..." % (input_file, output_file))

"""
ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
def compress_sam_file(input_file, # Input parameter

output_file): # Output parameter
"""
Sketch of real compression function
"""
ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
def summarise_bam_file(input_file, # Input parameter

output_file, # Output parameter
extra_stats_parameter): # Any number of extra parameters as required

"""
Sketch of real analysis function
"""
ii = open(input_file)
oo = open(output_file, "w")

6 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

If we were calling our functions manually, without the benefit of Ruffus, we would need the following
sequence of calls:

STAGE 1
map_dna_sequence("a.fasta", "a.sam")
map_dna_sequence("b.fasta", "b.sam")
map_dna_sequence("c.fasta", "c.sam")

STAGE 2
compress_sam_file("a.sam", "a.bam")
compress_sam_file("b.sam", "b.bam")
compress_sam_file("c.sam", "c.bam")

STAGE 3
summarise_bam_file("a.bam", "a.statistics")
summarise_bam_file("b.bam", "b.statistics")
summarise_bam_file("c.bam", "c.statistics")

3. Link the python functions into a pipeline

Ruffus makes exactly the same function calls on your behalf. However, first, we need to tell Ruffus what
the arguments should be for each of the function calls.

• The Input is easy: This is either the starting file set (*.fasta) or whatever is produced by the
previous stage.

• The Output file name is the same as the Input but with the appropriate extension.

These are specified using the Ruffus @transform decorator as follows:

from ruffus import *

starting_files = ["a.fasta", "b.fasta", "c.fasta"]

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files

suffix(".fasta"), # suffix = .fasta
".sam") # Output suffix = .sam

def map_dna_sequence(input_file,
output_file):

ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage

suffix(".sam"), # suffix = .sam
".bam") # Output suffix = .bam

def compress_sam_file(input_file,
output_file):

ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 3 bam->statistics

1.3. Chapter 1: An introduction to basic Ruffus syntax 7

ruffus Documentation, Release 2.6.3

#
@transform(compress_sam_file, # Input = previous stage

suffix(".bam"), # suffix = .bam
".statistics", # Output suffix = .statistics
"use_linear_model") # Extra statistics parameter

def summarise_bam_file(input_file,
output_file,
extra_stats_parameter):

"""
Sketch of real analysis function
"""
ii = open(input_file)
oo = open(output_file, "w")

4. @transform syntax

1. The 1st parameter for @transform is the Input.
This is either the set of starting data or the name of the previous pipeline function.
Ruffus chains together the stages of a pipeline by linking the Output of the previous stage into the
Input of the next.

2. The 2nd parameter is the current suffix
(i.e. our Input file extensions of ".fasta" or ".sam" or ".bam")

3. The 3rd parameter is what we want our Output file name to be after suffix string substitution (e.g.
.fasta - > .sam).
This works because we are using a sane naming scheme for our data files.

4. Other parameters can be passed to @transform and they will be forwarded to our python pipeline
function.

The functions that do the actual work of each stage of the pipeline remain unchanged. The role of Ruffus
is to make sure each is called in the right order, with the right parameters, running in parallel (using
multiprocessing if desired).

5. Run the pipeline!

Note: Key Ruffus Terminology:

A task is an annotated python function which represents a recipe or stage of your pipeline.

A job is each time your recipe is applied to a piece of data, i.e. each time Ruffus calls your function.

Each task or pipeline recipe can thus have many jobs each of which can work in parallel on different data.

Now we can run the pipeline with the Ruffus function pipeline_run:

pipeline_run()

This produces three sets of results in parallel, as you might expect:

>>> pipeline_run()
Job = [a.fasta -> a.sam] completed
Job = [b.fasta -> b.sam] completed
Job = [c.fasta -> c.sam] completed

Completed Task = map_dna_sequence

8 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Job = [a.sam -> a.bam] completed
Job = [b.sam -> b.bam] completed
Job = [c.sam -> c.bam] completed

Completed Task = compress_sam_file
Job = [a.bam -> a.statistics, use_linear_model] completed
Job = [b.bam -> b.statistics, use_linear_model] completed
Job = [c.bam -> c.statistics, use_linear_model] completed

Completed Task = summarise_bam_file

To work out which functions to call, pipeline_run finds the last task function of your pipeline, then works
out all the other functions this depends on, working backwards up the chain of dependencies automatically.

We can specify this end point of your pipeline explicitly:

>>> pipeline_run(target_tasks = [summarise_bam_file])

This allows us to only run part of the pipeline, for example:

>>> pipeline_run(target_tasks = [compress_sam_file])

Note: The example code can be copied and pasted into a python command shell.

1.4 Chapter 2: Transforming data in a pipeline with @transform

See also:

• Manual Table of Contents

• @transform syntax

Note: Remember to look at the example code:

• Chapter 1: Python Code for Transforming data in a pipeline with @transform

1.4.1 Review

Computational pipelines transform your data in stages until the final result is produced. Ruffus automates
the plumbing in your pipeline. You supply the python functions which perform the data transformation,
and tell Ruffus how these pipeline stages or task functions are connected together.

Note: The best way to design a pipeline is to:
• write down the file names of the data as it flows across your pipeline

• write down the names of functions which transforms the data at each stage of the pipeline.

1.4.2 Task functions as recipes

Each task function of the pipeline is a recipe or rule which can be applied repeatedly to our data.

For example, one can have

1.4. Chapter 2: Transforming data in a pipeline with @transform 9

http://www.gnu.org/software/make/manual/make.html#Rule-Introduction

ruffus Documentation, Release 2.6.3

• a compile() task which will compile any number of source code files, or

• a count_lines() task which will count the number of lines in any file or

• an align_dna() task which will align the DNA of many chromosomes.

1.4.3 @transform is a 1 to 1 operation

@transform is a 1:1 operation because for each input, it generates one output.

This is obvious when you count the number of jobs at each step. In our example pipeline, there are always
three jobs moving through in step at each stage (task).

Each Input or Output is not limited, however, to a single filename. Each job can accept, for example, a
pair of files as its Input, or generate more than one file or a dictionary or numbers as its Output.

When each job outputs a pair of files, this does not generate two jobs downstream. It just means that the
successive task in the pipeline will receive a list or tuple of files as its input parameter.

Note: The different sort of decorators in Ruffus determine the topology of your pipeline, i.e. how the
jobs from different tasks are linked together seamlessly.

@transform always generates one Output for one Input.

In the later parts of the tutorial, we will encounter more decorators which can split up, or join together or
group inputs.

In other words, using other decorators Input and Output can have many to one, many to many etc.
relationships.

A pair of files as the Input

Let us rewrite our previous example so that the Input of the first task are matching pairs of DNA sequence
files, processed in tandem.

from ruffus import *

starting_files = [("a.1.fastq", "a.2.fastq"),
("a.1.fastq", "a.2.fastq"),
("a.1.fastq", "a.2.fastq")]

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files

suffix(".1.fastq"), # suffix = .1.fastq
".sam") # Output suffix = .sam

def map_dna_sequence(input_files,
output_file):

remember there are two input files now
ii1 = open(input_files[0])

10 Chapter 1. Start Here:

http://en.wikipedia.org/wiki/DNA_sequencing_theory#Pairwise_end-sequencing

ruffus Documentation, Release 2.6.3

ii2 = open(input_files[1])
oo = open(output_file, "w")

The only changes are to the first task:

pipeline_run()
Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed

Completed Task = map_dna_sequence

suffix always matches only the first file name in each Input.

1.4.4 Input and Output parameters

Ruffus chains together different tasks by taking the Output from one job and plugging it automatically
as the Input of the next.

The first two parameters of each job are the Input and Output parameters respectively.

In the above example, we have:

>>> pipeline_run()
Job = [a.bam -> a.statistics, use_linear_model] completed
Job = [b.bam -> b.statistics, use_linear_model] completed
Job = [c.bam -> c.statistics, use_linear_model] completed

Completed Task = summarise_bam_file

Table 1.1: Parameters for summarise_bam_file()

Inputs Outputs Extra
"a.bam" "a.statistics" "use_linear_model"
"b.bam" "b.statistics" "use_linear_model"
"c.bam" "c.statistics" "use_linear_model"

Extra parameters are for the consumption of summarise_bam_file() and will not passed to the
next task.

Ruffus was designed for pipelines which save intermediate data in files. This is not compulsory but saving
your data in files at each step provides many advantages:

1. Ruffus can use file system time stamps to check if your pipeline is up to date

2. Your data is persistent across runs

3. This is a good way to pass large amounts of data across processes and computational nodes

Nevertheless, all the task parameters can include anything which suits your workflow, from lists of files,
to numbers, sets or tuples. Ruffus imposes few constraints on what you would like to send to each stage
of your pipeline.

Ruffus does, however, assume that if the Input and Output parameter contains strings, these will be
interpreted as file names required by and produced by that job. As we shall see, the modification times of
these file names indicate whether that part of the pipeline is up to date or needs to be rerun.

1.5 Chapter 3: More on @transform-ing data

See also:

1.5. Chapter 3: More on @transform-ing data 11

ruffus Documentation, Release 2.6.3

• Manual Table of Contents

• @transform syntax

Note: Remember to look at the example code:

• Chapter 3: Python Code for More on @transform-ing data

1.5.1 Review

Computational pipelines transform your data in stages until the final result is produced. Ruffus automates
the plumbing in your pipeline. You supply the python functions which perform the data transformation,
and tell Ruffus how these pipeline stages or task functions are connected together.

Note: The best way to design a pipeline is to:
• write down the file names of the data as it flows across your pipeline

• write down the names of functions which transforms the data at each stage of the pipeline.

Chapter 1: An introduction to basic Ruffus syntax described the bare bones of a simple Ruffus pipeline.

Using the Ruffus @transform decorator, we were able to specify the data files moving through our pipeline
so that our specified task functions could be invoked.

This may seem like a lot of effort and complication for something so simple: a couple of simple python
function calls we could have invoked ourselves. However, By letting Ruffus manage your pipeline param-
eters, you will get the following features for free:

1. Only out-of-date parts of the pipeline will be re-run

2. Multiple jobs can be run in parallel (on different processors if possible)

3. Pipeline stages can be chained together automatically. This means you can apply your pipeline just
as easily to 1000 files as to 3.

1.5.2 Running pipelines in parallel

Even though three sets of files have been specified for our initial pipeline, and they can be processed
completely independently, by default Ruffus runs each of them serially in succession.

To ask Ruffus to run them in parallel, all you have to do is to add a multiprocess parameter to
pipeline_run:

>>> pipeline_run(multiprocess = 5)

In this case, we are telling Ruffus to run a maximum of 5 jobs at the same time. Since we only have three
sets of data, that is as much parallelism as we are going to get...

1.5.3 Up-to-date jobs are not re-run unnecessarily

A job will be run only if the output file timestamps are out of date. If you ran our example code a second
time, nothing would happen because all the work is already complete.

12 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

We can check the details by asking Ruffus for more verbose output

>>> pipeline_run(verbose = 4)
Task = map_dna_sequence
All jobs up to date

Task = compress_sam_file
All jobs up to date

Task = summarise_bam_file
All jobs up to date

Nothing happens because:

• a.sam was created later than a.1.fastq and a.2.fastq, and

• a.bam was created later than a.sam and

• a.statistics was created later than a.bam.

and so on...

Let us see what happens if we recreated the file a.1.fastq so that it appears as if 1 out of the original data files is out of date

open("a.1.fastq", "w")
pipeline_run(multiprocess = 5)

The up to date jobs are cleverly ignored and only the out of date files are reprocessed.

>>> open("a.1.fastq", "w")
>>> pipeline_run(verbose=2)

Job = [[b.1.fastq, b.2.fastq] -> b.sam] # unnecessary: already up to date
Job = [[c.1.fastq, c.2.fastq] -> c.sam] # unnecessary: already up to date
Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed

Completed Task = map_dna_sequence
Job = [b.sam -> b.bam] # unnecessary: already up to date
Job = [c.sam -> c.bam] # unnecessary: already up to date
Job = [a.sam -> a.bam] completed

Completed Task = compress_sam_file
Job = [b.bam -> b.statistics, use_linear_model] # unnecessary: already up to date
Job = [c.bam -> c.statistics, use_linear_model] # unnecessary: already up to date
Job = [a.bam -> a.statistics, use_linear_model] completed

Completed Task = summarise_bam_file

1.5.4 Defining pipeline tasks out of order

The examples so far assumes that all your pipelined tasks are defined in order. (first_task before
second_task). This is usually the most sensible way to arrange your code.

If you wish to refer to tasks which are not yet defined, you can do so by quoting the function name as a
string and wrapping it with the indicator class output_from(...) so that Ruffus knowns this is a task name,
not a file name

#---
#
second task
#
task name string wrapped in output_from(...)
@transform(output_from("first_task"), suffix(".output.1"), ".output2")
def second_task(input_files, output_file):

with open(output_file, "w"): pass

1.5. Chapter 3: More on @transform-ing data 13

ruffus Documentation, Release 2.6.3

#---
#
first task
#
@transform(first_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

#---
#
Run
#
pipeline_run([second_task])

You can also refer to tasks (functions) in other modules, in which case the full qualified name must be
used:

@transform(output_from("other_module.first_task"), suffix(".output.1"), ".output2")
def second_task(input_files, output_file):

pass

1.5.5 Multiple dependencies

Each task can depend on more than one antecedent simply by chaining to a list in @transform

#
third_task depends on both first_task() and second_task()
#
@transform([first_task, second_task], suffix(".output.1"), ".output2")
def third_task(input_files, output_file):

with open(output_file, "w"): pass

third_task() depends on and follows both first_task() and second_task(). However,
these latter two tasks are independent of each other and can and will run in parallel. This can be clearly
shown for our example if we added a little randomness to the run time of each job:

time.sleep(random.random())

The execution of first_task() and second_task() jobs will be interleaved and they finish in no
particular order:

>>> pipeline_run([third_task], multiprocess = 6)
Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = second_task
Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed

14 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Note: See the example code

1.5.6 @follows

If there is some extrinsic reason one non-dependent task has to precede the other, then this can be specified
explicitly using @follows:

#
@follows specifies a preceding task
#
@follows("first_task")
@transform(second_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def second_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):

@follows specifies either a preceding task (e.g. first_task), or if it has not yet been defined, the name
(as a string) of a task function (e.g. "first_task").

With the addition of @follows, all the jobs of second_task() start after those from first_task()
have finished:

>>> pipeline_run([third_task], multiprocess = 6)
Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = first_task
Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = second_task

1.5.7 Making directories automatically with @follows and mkdir

@follows is also useful for making sure one or more destination directories exist before a task is run.

Ruffus provides special syntax to support this, using the special mkdir indicator class. For example:

#
@follows specifies both a preceding task and a directory name
#
@follows("first_task", mkdir("output/results/here"))
@transform(second_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def second_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):

Before second_task() is run, the output/results/here directory will be created if necessary.

1.5. Chapter 3: More on @transform-ing data 15

ruffus Documentation, Release 2.6.3

1.5.8 Globs in the Input parameter

• As a syntactic convenience, Ruffus also allows you to specify a glob pattern (e.g. *.txt) in the
Input parameter.

• glob patterns will be automatically specify all matching file names as the Input.

• Any strings within Input which contain the letters: *?[] will be treated as a glob pattern.

The first function in our initial Ruffus pipeline example could have been written as:

#
STAGE 1 fasta->sam
#
@transform("*.fasta", # Input = glob

suffix(".fasta"), # suffix = .fasta
".sam") # Output suffix = .sam

def map_dna_sequence(input_file,
output_file):

""

1.5.9 Mixing Tasks and Globs in the Input parameter

glob patterns, references to tasks and file names strings can be mixed freely in (nested) python lists and
tuples in the Input parameter.

For example, a task function can chain to the Output from multiple upstream tasks:

@transform([task1, task2, # Input = multiple tasks
"aa*.fasta", + all files matching glob
"zz.fasta"] + file name
suffix(".fasta"), # suffix = .fasta
".sam") # Output suffix = .sam

def map_dna_sequence(input_file,
output_file):

""

In all cases, Ruffus tries to do the right thing, and to make the simple or obvious case require the simplest,
least onerous syntax.

If sometimes Ruffus does not behave the way you expect, please write to the authors: it may be a bug!

Chapter 5: Understanding how your pipeline works with pipeline_printout(...) and Chapter 6: Running
Ruffus from the command line with ruffus.cmdline will show you how to to make sure that your intentions
are reflected in Ruffus code.

1.6 Chapter 4: Creating files with @originate

See also:

• Manual Table of Contents

• @originate syntax in detail

Note: Remember to look at the example code:

• Chapter 4: Python Code for Creating files with @originate

16 Chapter 1. Start Here:

http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html

ruffus Documentation, Release 2.6.3

1.6.1 Simplifying our example with @originate

Our previous pipeline example started off with a set of files which we had to create first.

This is a common task: pipelines have to start somewhere.

Ideally, though, we would only want to create these starting files if they didn’t already exist. In other
words, we want a sort of @transform which makes files from nothing (None?).

This is exactly what @originate helps you to do.

Rewriting our pipeline with @originate gives the following three steps:

from ruffus import *

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start']])

def create_initial_file_pairs(output_files):
create both files as necessary
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):

with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):

with open(output_file, "w"): pass

#
Run
#
pipeline_run([second_task])

Job = [None -> [job1.a.start, job1.b.start]] completed
Job = [None -> [job2.a.start, job2.b.start]] completed
Job = [None -> [job3.a.start, job3.b.start]] completed

Completed Task = create_initial_file_pairs
Job = [[job1.a.start, job1.b.start] -> job1.a.output.1] completed
Job = [[job2.a.start, job2.b.start] -> job2.a.output.1] completed
Job = [[job3.a.start, job3.b.start] -> job3.a.output.1] completed

Completed Task = first_task
Job = [job1.a.output.1 -> job1.a.output.2] completed
Job = [job2.a.output.1 -> job2.a.output.2] completed
Job = [job3.a.output.1 -> job3.a.output.2] completed

Completed Task = second_task

1.6. Chapter 4: Creating files with @originate 17

ruffus Documentation, Release 2.6.3

1.7 Chapter 5: Understanding how your pipeline works with
pipeline_printout(...)

See also:

• Manual Table of Contents

• pipeline_printout(...) syntax

• Python Code for this chapter

Note:
• Whether you are learning or developing ruffus pipelines, your best friend is pipeline_printout(...) This

shows the exact parameters and files as they are passed through the pipeline.

• We also strongly recommend you use the Ruffus.cmdline convenience module which will take care
of all the command line arguments for you. See Chapter 6: Running Ruffus from the command line with
ruffus.cmdline.

1.7.1 Printing out which jobs will be run

pipeline_printout(...) takes the same parameters as pipeline_run but just prints the tasks which are and are
not up-to-date.

The verbose parameter controls how much detail is displayed.

Let us take the pipelined code we previously wrote in Chapter 3 More on @transform-ing data and
@originate but call pipeline_printout(...) instead of pipeline_run(...). This lists the tasks which will be
run in the pipeline:

>>> import sys
>>> pipeline_printout(sys.stdout, [second_task])

__
Tasks which will be run:

Task = create_initial_file_pairs
Task = first_task
Task = second_task
__

To see the input and output parameters of each job in the pipeline, try increasing the verbosity from the
default (1) to 3 (See code)

This is very useful for checking that the input and output parameters have been specified correctly.

1.7.2 Determining which jobs are out-of-date or not

It is often useful to see which tasks are or are not up-to-date. For example, if we were to run the pipeline
in full, and then modify one of the intermediate files, the pipeline would be partially out of date.

Let us start by run the pipeline in full but then modify job1.a.output.1 so that the second task
appears out-of-date:

18 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

pipeline_run([second_task])

"touch" job1.stage1
open("job1.a.output.1", "w").close()

Run pipeline_printout(...) with a verbosity of 5.

This will tell you exactly why second_task(...) needs to be re-run: because job1.a.output.1
has a file modification time after job1.a.output.2 (highlighted):

>>> pipeline_printout(sys.stdout, [second_task], verbose = 5)

__
Tasks which are up-to-date:

Task = create_initial_file_pairs
Task = first_task

__

__
Tasks which will be run:

Task = second_task
Job = [job1.a.output.1

-> job1.a.output.2]
>>> # File modification times shown for out of date files

Job needs update:
Input files:

* 22 Jul 2014 15:29:19.33: job1.a.output.1
Output files:

* 22 Jul 2014 15:29:07.53: job1.a.output.2

Job = [job2.a.output.1
-> job2.a.output.2]

Job = [job3.a.output.1
-> job3.a.output.2]

__

N.B. At a verbosity of 5, even jobs which are up-to-date in second_task are displayed.

1.7.3 Verbosity levels

The verbosity levels for pipeline_printout(...) and pipeline_run(...) can be specified from verbose =
0 (print out nothing) to the extreme verbosity of verbose=6. A verbosity of above 10 is reserved for
the internal debugging of Ruffus

• level 0 : nothing

• level 1 : Out-of-date Task names

• level 2 : All Tasks (including any task function docstrings)

• level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

• level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

• level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

1.7. Chapter 5: Understanding how your pipeline works with pipeline_printout(...) 19

ruffus Documentation, Release 2.6.3

• level 6 : All jobs in All Tasks whether out of date or not

• level 10: logs messages useful only for debugging ruffus pipeline code

1.7.4 Abbreviating long file paths with verbose_abbreviated_path

Pipelines often produce interminable lists of deeply nested filenames. It would be nice to be able to
abbreviate this to just enough information to follow the progress.

The verbose_abbreviated_path parameter specifies that pipeline_printout(...) and
pipeline_run(...) only display

1. the NNN th top level sub-directories to be included, or that

2. the message to be truncated to a specified ‘MMM characters (to fit onto a line, for example).
MMM is specified by setting verbose_abbreviated_path = -MMM, i.e. negative
values.

Note that the number of characters specified is just the separate lengths of the input and
output parameters, not the entire indented line. You many need to specify a smaller limit
that you expect (e.g. 60 rather than 80)

pipeline_printout(verbose_abbreviated_path = NNN)
pipeline_run(verbose_abbreviated_path = -MMM)

verbose_abbreviated_path defaults to 2

For example:

Given ["aa/bb/cc/dddd.txt", "aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt"]

Original relative paths
"[aa/bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

Full abspath
verbose_abbreviated_path = 0
"[/test/ruffus/src/aa/bb/cc/dddd.txt, /test/ruffus/src/aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

Specifed level of nested directories
verbose_abbreviated_path = 1
"[.../dddd.txt, .../gggg.txt]"

verbose_abbreviated_path = 2
"[.../cc/dddd.txt, .../ffff/gggg.txt]"

verbose_abbreviated_path = 3
"[.../bb/cc/dddd.txt, .../eeee/ffff/gggg.txt]"

Truncated to MMM characters
verbose_abbreviated_path = -60
"<???> /bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

1.7.5 Getting a list of all tasks in a pipeline

If you just wanted a list of all tasks (Ruffus decorated function names), then you can just run Run
pipeline_get_task_names(...).

This doesn’t touch any pipeline code or even check to see if the pipeline is connected up properly.

20 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

However, it is sometimes useful to allow users at the command line to choose from a list of possible tasks
as a target.

1.8 Chapter 6: Running Ruffus from the command line with ruf-
fus.cmdline

See also:

• Manual table of Contents

We find that much of our Ruffus pipeline code is built on the same template and this is generally a good place to start
developing a new pipeline.

From version 2.4, Ruffus includes an optional Ruffus.cmdline module that provides support for a set of common
command line arguments. This makes writing Ruffus pipelines much more pleasant.

1.8.1 Template for argparse

All you need to do is copy these 6 lines

import ruffus.cmdline as cmdline

parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?')

<<<---- add your own command line options like --input_file here
parser.add_argument("--input_file")

options = parser.parse_args()

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

<<<---- pipelined functions go here

cmdline.run (options)

You are recommended to use the standard argparse module but the deprecated optparse module works as
well. (See below for the template)

1.8.2 Command Line Arguments

Ruffus.cmdline by default provides these predefined options:

-v, --verbose
--version

-L, --log_file

tasks
-T, --target_tasks

--forced_tasks
-j, --jobs

--use_threads

1.8. Chapter 6: Running Ruffus from the command line with ruffus.cmdline 21

http://docs.python.org/2.7/library/argparse.html
http://docs.python.org/2.7/library/optparse.html

ruffus Documentation, Release 2.6.3

printout
-n, --just_print

flow chart
--flowchart
--key_legend_in_graph
--draw_graph_horizontally
--flowchart_format

check sum
--touch_files_only
--checksum_file_name
--recreate_database

1.8.3 1) Logging

The script provides for logging both to the command line:

myscript -v
myscript --verbose

and an optional log file:

keep tabs on yourself
myscript --log_file /var/log/secret.logbook

Logging is ignored if neither --verbose or --log_file are specified on the command line

Ruffus.cmdline automatically allows you to write to a shared log file via a proxy from multiple
processes. However, you do need to use logging_mutex for the log files to be synchronised properly
across different jobs:

with logging_mutex:

logger_proxy.info("Look Ma. No hands")

Logging is set up so that you can write

A) Only to the log file:

logger.info("A message")

B) Only to the display:

logger.debug("A message")

C) To both simultaneously:

from ruffus.cmdline import MESSAGE

logger.log(MESSAGE, "A message")

22 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.8.4 2) Tracing pipeline progress

This is extremely useful for understanding what is happening with your pipeline, what tasks and which
jobs are up-to-date etc.

See Chapter 5: Understanding how your pipeline works with pipeline_printout(...)

To trace the pipeline, call script with the following options

well-mannered, reserved
myscript --just_print
myscript -n

or

extremely loquacious
myscript --just_print --verbose 5
myscript -n -v5

Increasing levels of verbosity (--verbose to --verbose 5) provide more detailed output

1.8.5 3) Printing a flowchart

This is the subject of Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(...).

Flowcharts can be specified using the following option:

myscript --flowchart xxxchart.svg

The extension of the flowchart file indicates what format the flowchart should take, for example, svg,
jpg etc.

Override with --flowchart_format

1.8.6 4) Running in parallel on multiple processors

Optionally specify the number of parallel strands of execution and which is the last target task to run.
The pipeline will run starting from any out-of-date tasks which precede the target and proceed no further
beyond the target.

myscript --jobs 15 --target_tasks "final_task"
myscript -j 15

1.8.7 5) Setup checkpointing so that Ruffus knows which files are out of date

The checkpoint file uses to the value set in the environment (DEFAULT_RUFFUS_HISTORY_FILE).

If this is not set, it will default to .ruffus_history.sqlite in the current working directory.

Either can be changed on the command line:

myscript --checksum_file_name mychecksum.sqlite

1.8. Chapter 6: Running Ruffus from the command line with ruffus.cmdline 23

ruffus Documentation, Release 2.6.3

Recreating checkpoints

Create or update the checkpoint file so that all existing files in completed jobs appear up to date

Will stop sensibly if current state is incomplete or inconsistent

myscript --recreate_database

Touch files

As far as possible, create empty files with the correct timestamp to make the pipeline appear up to date.

myscript --touch_files_only

1.8.8 6) Skipping specified options

Note that particular options can be skipped (not added to the command line), if they conflict with your
own options, for example:

see below for how to use get_argparse
parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?',

Exclude the following options: --log_file --key_legend_in_graph
ignored_args = ["log_file", "key_legend_in_graph"])

1.8.9 7) Specifying verbosity and abbreviating long paths

The verbosity can be specified on the command line

myscript --verbose 5

verbosity of 5 + 1 = 6
myscript --verbose 5 --verbose

verbosity reset to 2
myscript --verbose 5 --verbose --verbose 2

If the printed paths are too long, and need to be abbreviated, or alternatively, if you want see the full
absolute paths of your input and output parameters, you can specify an extension to the verbosity. See
the manual discussion of verbose_abbreviated_path for more details. This is specified as --verbose
VERBOSITY:VERBOSE_ABBREVIATED_PATH. (No spaces!)

For example:

verbosity of 4
myscript.py --verbose 4

display three levels of nested directories
myscript.py --verbose 4:3

restrict input and output parameters to 60 letters
myscript.py --verbose 4:-60

24 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.8.10 8) Displaying the version

Note that the version for your script will default to "%(prog)s 1.0" unless specified:

parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?',
version = "my_programme.py v. 2.23")

1.8.11 Template for optparse

deprecated since python 2.7

#
Using optparse (new in python v 2.6)
#
from ruffus import *

parser = cmdline.get_optgparse(version="%prog 1.0", usage = "\n\n %prog [options]")

<<<---- add your own command line options like --input_file here
parser.add_option("-i", "--input_file", dest="input_file", help="Input file")

(options, remaining_args) = parser.parse_args()

logger which can be passed to ruffus tasks
logger, logger_mutex = cmdline.setup_logging ("this_program", options.log_file, options.verbose)

<<<---- pipelined functions go here

cmdline.run (options)

1.9 Chapter 7: Displaying the pipeline visually with
pipeline_printout_graph(...)

See also:

• Manual Table of Contents

• pipeline_printout_graph(...) syntax

• @graphviz(...) syntax

Note: Remember to look at the example code:

• Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(...)

1.9.1 Printing out a flowchart of our pipeline

It is all very well being able to trace the data flow through the pipeline as text. Sometimes, however, we
need a bit of eye-candy!

We can see a flowchart for our fledgling pipeline by executing:

1.9. Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(...) 25

ruffus Documentation, Release 2.6.3

pipeline_printout_graph ('flowchart.svg',
'svg',
[second_task],
no_key_legend = False)

Flowcharts can be printed in a large number of formats including jpg, svg, png and pdf.

Note: Flowcharts rely on the dot programme from Graphviz.

Please make sure this is installed.

There are 8 standard colour schemes, but you can further customise all the colours to your satisfaction:

See here for example code.

1.9.2 Command line options made easier with ruffus.cmdline

If you are using ruffus.cmdline, then you can easily ask for a flowchart from the command line:

your_script.py --flowchart pipeline_flow_chart.png

The output format is deduced from the extension but can be specified manually:

specify format. Otherwise, deduced from the extension
your_script.py --flowchart pipeline_flow_chart.png --flowchart_format png

Print the flow chart horizontally or vertically...

flowchart proceeds from left to right , rather than from top to bottom
your_script.py --flowchart pipeline_flow_chart.png --draw_graph_horizontally

26 Chapter 1. Start Here:

http://www.graphviz.org/

ruffus Documentation, Release 2.6.3

...with or without a key legend

Draw key legend
your_script.py --flowchart pipeline_flow_chart.png --key_legend_in_graph

1.9.3 Horribly complicated pipelines!

Flowcharts are especially useful if you have really complicated pipelines, such as

1.9.4 Circular dependency errors in pipelines!

Especially, if the pipeline is not set up properly, and vicious circular dependencies are present:

1.9. Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(...) 27

ruffus Documentation, Release 2.6.3

1.9.5 @graphviz: Customising the appearance of each task

The graphic for each task can be further customised as you please by adding graphviz attributes such as
the URL, shape, colour directly to that node using the decorator ‘@graphviz.

For example, we can customise the graphic for myTask() to look like:

28 Chapter 1. Start Here:

http://www.graphviz.org/doc/info/attrs.html

ruffus Documentation, Release 2.6.3

by adding the requisite attributes as follows:

@graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"',
color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"',
label_suffix = "???", label_prefix = "What is this?
 ",
label = "<What isthis>",
shape= "component", height = 1.5, peripheries = 5,
style="dashed")

def Up_to_date_task2(infile, outfile):
pass

Can use dictionary if you wish...
graphviz_params = {"URL":"http://cnn.com", "fontcolor": '"#FF00FF"'}
@graphviz(**graphviz_params)
def myTask(input,output):

pass

You can even using HTML formatting in task names, including specifying line wraps (as in the above
example), using the label parameter. However, HTML labels must be enclosed in < and >.

label = "<Line
 wrapped task_name()>"

Otherwise, you can also opt to keep the task name and wrap it with a prefix and suffix:

label_suffix = "??? ", label_prefix = ": What is this?"

The URL attribute allows the generation of clickable svg, and also client / server side image maps
usable in web pages. See Graphviz documentation

1.10 Chapter 8: Specifying output file names with formatter() and
regex()

See also:

• Manual Table of Contents

• suffix() syntax

• formatter() syntax

• regex() syntax

Note: Remember to look at the example code:

• Chapter 8: Python Code for Specifying output file names with formatter() and regex()

1.10.1 Review

Computational pipelines transform your data in stages until the final result is produced. The most straight-
forward way to use Ruffus is to hold the intermediate results after each stage in a series of files with related
file names.

1.10. Chapter 8: Specifying output file names with formatter() and regex() 29

http://www.graphviz.org/content/output-formats#dimap

ruffus Documentation, Release 2.6.3

Part of telling Ruffus how these pipeline stages or task functions are connected together is to write simple
rules for how to the file names for each stage follow on from each other. Ruffus helps you to specify these
file naming rules.

Note: The best way to design a pipeline is to:
• Write down the file names of the data as it flows across your pipeline. Do these file names follow

a pattern ?

• Write down the names of functions which transforms the data at each stage of the pipeline.

1.10.2 A different file name suffix() for each pipeline stage

The easiest and cleanest way to write Ruffus pipelines is to use a different suffix for each stage of your
pipeline.

We used this approach in Chapter 1: An introduction to basic Ruffus syntax and in code from Chapter 3:
More on @transform-ing data:

#Task Name: File suffices
_________________________ ______________________
create_initial_file_pairs *.start
first_task *.output.1
second_task *.output.2

There is a long standing convention of using file suffices to denote file type: For example, a “compile”
task might convert source files of type *.c to object files of type *.o.

We can think of Ruffus tasks comprising :

• recipes in @transform(...) for transforming file names: changing .c to a .o (e.g. AA.c
-> AA.o BB.c -> BB.o)

• recipes in a task function def foo_bar() for transforming your data: from source .c to
object .o

Let us review the Ruffus syntax for doing this:

@transform(create_initial_file_pairs, # Input: Name of previous task(s)
suffix(".start"), # Matching suffix
".output.1") # Replacement string

def first_task(input_files, output_file):
with open(output_file, "w"): pass

1. Input:

The first parameter for @transform can be a mixture of one or more:

• previous tasks (e.g. create_initial_file_pairs)

• file names (all python strings are treated as paths)

• glob specifications (e.g *.c, /my/path/*.foo)

Each element provides an input for the task. So if the previous task
create_initial_file_pairs has five outputs, the next @transform task
will accept these as five separate inputs leading to five independent jobs.

2. suffix():

30 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

The second parameter suffix(".start") must match the end of the first string
in each input. For example, create_initial_file_pairs produces the
list [’job1.a.start’, ’job1.b.start’], then suffix(".start") must
matches the first string, i.e. ’job1.a.start’. If the input is nested structure, this
would be iterated through recursively to find the first string.

Note: Inputs which do not match the suffix are discarded altogether.

3. Replacement:

The third parameter is the replacement for the suffix. The pair of input strings in the step3
example produces the following output parameter

input_parameters = ['job1.a.start', 'job1.b.start']
matching_input = 'job1.a.start'
output_parameter = 'job1.a.output.1'

When the pipeline is run, this results in the following equivalent call to
first_task(...):

first_task(['job1.a.start', 'job1.b.start'], 'job1.a.output.1'):

The replacement parameter can itself be a list or any arbitrary complicated structure:

@transform(create_initial_file_pairs, # Input
suffix(".a.start"), # Matching suffix
[".output.a.1", ".output.b.1", 45]) # Replacement list

def first_task(input_files, output_parameters):
print "input_parameters = ", input_files
print "output_parameters = ", output_parameters

In which case, all the strings are used as replacements, other values are left untouched, and
we obtain the following:

job #1
input = ['job1.a.start', 'job1.b.start']
output = ['job1.output.a.1', 'job1.output.b.1', 45]

job #2
input = ['job2.a.start', 'job2.b.start']
output = ['job2.output.a.1', 'job2.output.b.1', 45]

job #3
input = ['job3.a.start', 'job3.b.start']
output = ['job3.output.a.1', 'job3.output.b.1', 45]

Note how task function is called with the value 45 verbatim because it is not a string.

1.10.3 formatter() manipulates pathnames and regular expression

suffix() replacement is the cleanest and easiest way to generate suitable output file names for each stage
in a pipeline. Often, however, we require more complicated manipulations to specify our file names. For
example,

• It is common to have to change directories from a data directory to a working directory as the first
step of a pipeline.

1.10. Chapter 8: Specifying output file names with formatter() and regex() 31

ruffus Documentation, Release 2.6.3

• Data management can be simplified by separate files from each pipeline stage into their own direc-
tory.

• Information may have to be decoded from data file names, e.g.
"experiment373.IBM.03March2002.txt"

Though formatter() is much more powerful, the principle and syntax are the same: we take string elements
from the Input and perform some replacements to generate the Output parameters.

formatter()

• Allows easy manipulation of path subcomponents in the style of os.path.split(), and
os.path.basename

• Uses familiar python string.format syntax (See string.format examples.)

• Supports optional regular expression (re) matches including named captures.

• Can refer to any file path (i.e. python string) in each input and is not limited like suffix() to the first
string.

• Can even refer to individual letters within a match

Path name components

formatter() breaks down each input pathname into path name components which can then be recombined
in whichever way by the replacement string.

Given an example string of :

input_string = "/directory/to/a/file.name.ext"
formatter()

the path components are:

• basename: The base name excluding extension, "file.name"

• ext : The extension, ".ext"

• path : The dirname, "/directory/to/a"

• subdir : A list of sub-directories in the path in reverse order, ["a", "to",
"directory", "/"]

• subpath : A list of descending sub-paths in reverse order, ["/directory/to/a",
"/directory/to", "/directory", "/"]

The replacement string refers to these components by using python string.format style curly braces.
"{NAME}"

We refer to an element from the Nth input string by index, for example:

• "{ext[0]}" is the extension of the first file name string in Input.

• "{basename[1]}" is the basename of the second file name in Input.

• "{basename[1][0:3]}" are the first three letters from the basename of the second file name
in Input.

subdir, subpath were designed to help you navigate directory hierachies with the mini-
mum of fuss. For example, you might want to graft a hierachical path to another location:
"{subpath[0][2]}/from/{subdir[0][0]}/{basename[0]}" neatly replaces just one di-
rectory ("to") in the path with another ("from"):

32 Chapter 1. Start Here:

http://docs.python.org/2/library/os.path.html#os.path.split
http://docs.python.org/2/library/os.path.html#os.path.basename
http://docs.python.org/2/library/string.html#string-formatting
http://docs.python.org/2/library/string.html#format-examples
http://docs.python.org/2/library/re.html#re.MatchObject.group
http://docs.python.org/2/library/os.path.html#os.path.basename
http://docs.python.org/2/library/os.path.html#os.path.splitext
http://docs.python.org/2/library/os.path.html#os.path.splitext
http://docs.python.org/2/library/os.path.html#os.path.dirname
http://docs.python.org/2/library/string.html#string-formatting

ruffus Documentation, Release 2.6.3

replacement_string = "{subpath[0][2]}/from/{subdir[0][0]}/{basename[0]}"

input_string = "/directory/to/a/file.name.ext"
result_string = "/directory/from/a/file.name.ext"

Filter and parse using regular expressions

Regular expression matches can be used with the similar syntax. Our example string can be parsed using
the following regular expression:

input_string = "/directory/to/a/file.name.ext"
formatter(r"/directory/(.+)/(?P<MYFILENAME>)\.ext")

We capture part of the path using (.+), and the base name using (?P<MYFILENAME>).
These matching subgroups can be referred to by index but for greater clarity the second named
capture can also be referred to by name, i.e. {MYFILENAME}.

The regular expression components for the first string can thus be referred to as follows:

• {0[0]} : The entire match captured by index, "/directory/to/a/file.name.ext"

• {1[0]} : The first match captured by index, "to/a"

• {2[0]} : The second match captured by index, "file.name"

• {MYFILENAME[0]} : The match captured by name, "file.name"

If each input consists of a list of paths such as [’job1.a.start’, ’job1.b.start’,
’job1.c.start’], we can match each of them separately by using as many regular expressions as
necessary. For example:

input_string = ['job1.a.start', 'job1.b.start', 'job1.c.start']
Regular expression matches for 1st, 2nd but not 3rd element
formatter(".+a.start", "b.start$")

Or if you only wanted regular expression matches for the second file name (string), pad with None:

input_string = ['job1.a.start', 'job1.b.start', 'job1.c.start']
Regular expression matches for 2nd but not 1st or 3rd elements
formatter(None, "b.start$")

Using @transform() with formatter()

We can put these together in the following example:

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.c.start']])

def create_initial_file_pairs(output_files):
create both files as necessary
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---

1.10. Chapter 8: Specifying output file names with formatter() and regex() 33

http://docs.python.org/2/library/re.html#re.MatchObject.group
http://docs.python.org/2/library/re.html#re.MatchObject.group

ruffus Documentation, Release 2.6.3

#
formatter
#

first task
@transform(create_initial_file_pairs, # Input

formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
".+/job[123].b.start"), # Match only "b" files

["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
"{path[1]}/jobs{JOBNUMBER[0]}.output.b.1", 45])

def first_task(input_files, output_parameters):
print "input_parameters = ", input_files
print "output_parameters = ", output_parameters

#
Run
#
pipeline_run(verbose=0)

This produces:

input_parameters = ['job1.a.start',
'job1.b.start']

output_parameters = ['/home/lg/src/temp/jobs1.output.a.1',
'/home/lg/src/temp/jobs1.output.b.1', 45]

input_parameters = ['job2.a.start',
'job2.b.start']

output_parameters = ['/home/lg/src/temp/jobs2.output.a.1',
'/home/lg/src/temp/jobs2.output.b.1', 45]

Notice that job3 has ’job3.c.start’ as the second file. This fails to match the regular
expression and is discarded.

Note: Failed regular expression mismatches are ignored.

formatter() regular expressions are thus very useful in filtering out all files which do not match
your specified criteria.

If your some of your task inputs have a mixture of different file types, a simple
Formatter(".txt$"), for example, will make your code a lot simpler...

string substitution for “extra” arguments

The first two arguments for Ruffus task functions are special because they are the Input and Output
parameters which link different stages of a pipeline.

Python strings in these arguments are names of data files whose modification times indicate whether the
pipeline is up to date or not.

Other arguments to task functions are not passed down the pipeline but consumed. Any python strings
they contain do not need to be file names. These extra arguments are very useful for passing data to
pipelined tasks, such as shared values, loggers, programme options etc.

34 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

One helpful feature is that strings in these extra arguments are also subject to formatter() string substitu-
tion. This means you can leverage the parsing capabilities of Ruffus to decode any information about the
pipeline data files, These might include the directories you are running in and parts of the file name.

For example, if we would want to know which files go with which “job number” in the previous example:

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.c.start']])

def create_initial_file_pairs(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
#
print job number as an extra argument
#

first task
@transform(create_initial_file_pairs, # Input

formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
".+/job[123].b.start"), # Match only "b" files

["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
"{path[1]}/jobs{JOBNUMBER[0]}.output.b.1"],

"{JOBNUMBER[0]}"
def first_task(input_files, output_parameters, job_number):

print job_number, ":", input_files

pipeline_run(verbose=0)

>>> pipeline_run(verbose=0)
1 : ['job1.a.start', 'job1.b.start']
2 : ['job2.a.start', 'job2.b.start']

Changing directories using formatter() in a zoo...

Here is a more fun example. We would like to feed the denizens of a zoo. Unfortunately, the file names
for these are spread over several directories. Ideally, we would like their food supply to be grouped more
sensibly. And, of course, we only want to feed the animals, not the plants.

I have colour coded the input and output files for this task to show how we would like to rearrange them:

from ruffus import *

Make directories

1.10. Chapter 8: Specifying output file names with formatter() and regex() 35

ruffus Documentation, Release 2.6.3

@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])

@originate(
List of animals and plants
["tiger/mammals.wild.animals",

"lion/mammals.wild.animals",
"lion/mammals.handreared.animals",
"dog/mammals.tame.animals",
"dog/mammals.wild.animals",
"crocodile/reptiles.wild.animals",
"rose/flowering.handreared.plants"])

def create_initial_files(output_file):
with open(output_file, "w") as oo: pass

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

pipeline_run(verbose=0)

We can see that the food for each animal are now grouped by clade in the same directory, which
makes a lot more sense...

Note how we used subpath[0][1] to move down one level of the file path to build a new
file name.

>>> pipeline_run(verbose=0)
Food for the wild crocodile = ./reptiles/wild.crocodile.food will be placed in ./reptiles
Food for the tame dog = ./mammals/tame.dog.food will be placed in ./mammals
Food for the wild dog = ./mammals/wild.dog.food will be placed in ./mammals
Food for the handreared lion = ./mammals/handreared.lion.food will be placed in ./mammals
Food for the wild lion = ./mammals/wild.lion.food will be placed in ./mammals
Food for the wild tiger = ./mammals/wild.tiger.food will be placed in ./mammals

1.10.4 regex() manipulates via regular expressions

If you are a hard core regular expressions fan, you may want to use regex() instead of suffix() or formatter().

Note: regex() uses regular expressions like formatter() but

• It only matches the first file name in the input. As described above, formatter() can match any one
or more of the input filename strings.

• It does not understand file paths so you may have to perform your own directory / file name parsing.

• String replacement uses syntax borrowed from re.sub(), rather than building a result from parsed
regular expression (and file path) components

36 Chapter 1. Start Here:

http://docs.python.org/2/library/re.html#re.sub

ruffus Documentation, Release 2.6.3

In general formatter() is more powerful and was introduced from version 2.4 is intended to be a more user
friendly replacement for regex().

Let us see how the previous zoo example looks with regex():

formatter() code:

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

regex() code:

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

r"\1/\g<clade>/\g<tame>.\2.food", # Replacement

r"\1/\g<clade>", # new_directory
r"\2", # animal_name
"\g<tame>") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

The regular expression to parse the input file path safely was a bit hairy to write, and it is not clear that it
handles all edge conditions (e.g. files in the root directory). Apart from that, if the limitations of regex()
do not preclude its use, then the two approaches are not so different in practice.

1.11 Chapter 9: Preparing directories for output with @mkdir()

See also:

• Manual Table of Contents

• @follows(mkdir()) syntax in detail

• @mkdir syntax in detail

Note: Remember to look at the example code:

• Chapter 9: Python Code for Preparing directories for output with @mkdir()

1.11.1 Overview

In Chapter 3, we saw that we could use @follows(mkdir()) to ensure that output directories exist:

1.11. Chapter 9: Preparing directories for output with @mkdir() 37

ruffus Documentation, Release 2.6.3

#
create_new_files() @follows mkdir
#
@follows(mkdir("output/results/here"))
@originate(["output/results/here/a.start_file",

"output/results/here/b.start_file"])
def create_new_files(output_file_pair):

pass

This ensures that the decorated task follows (@follows) the making of the specified directory (mkdir()).

Sometimes, however, the Output is intended not for any single directory but a group of destinations
depending on the parsed contents of Input paths.

1.11.2 Creating directories after string substitution in a zoo...

You may remember this example from Chapter 8:

We want to feed the denizens of a zoo. The original file names are spread over several directories and we
group their food supply by the clade of the animal in the following manner:

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "%40s -> %90s" % (input_file, output_file)
this blows up
open(output_file, "w")

The example code from Chapter 8 is, however, incomplete. If we were to actually create the specified
files we would realise that we had forgotten to create the destination directories reptiles, mammals
first!

using formatter()

We could of course create directories manually. However, apart from being tedious and error prone, we
have already gone to some lengths to parse out the diretories for @transform. Why don’t we use the same
logic to make the directories?

Can you see the parallels between the syntax for @mkdir and @transform?

create directories for each clade
@mkdir(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

38 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

"{subpath[0][1]}/{clade[0]}) # new_directory

Put animals of each clade in the same directory
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "%40s -> %90s" % (input_file, output_file)
this works now
open(output_file, "w")

See the example code

using regex()

If you are particularly fond of using regular expression to parse file paths, you could also use regex():

create directories for each clade
@mkdir(create_initial_files, # Input

regex(r"(.*?)/?(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!
r"\1/\g<clade>") # new_directory

Put animals of each clade in the same directory
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "%40s -> %90s" % (input_file, output_file)
this works now
open(output_file, "w")

1.12 Chapter 10: Checkpointing: Interrupted Pipelines and Excep-
tions

See also:

• Manual Table of Contents

Note: Remember to look at the example code:

• Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions

1.12. Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions 39

ruffus Documentation, Release 2.6.3

1.12.1 Overview

Computational pipelines transform your data in stages until the final result is produced.

By default, Ruffus uses file modification times for the input and output to determine whether each stage
of a pipeline is up-to-date or not. But what happens when the task function is interrupted, whether from
the command line or by error, half way through writing the output?

In this case, the half-formed, truncated and corrupt Output file will look newer than its Input and hence
up-to-date.

1.12.2 Interrupting tasks

Let us try with an example:

from ruffus import *
import sys, time

create initial files
@originate(['job1.start'])
def create_initial_files(output_file):

with open(output_file, "w") as oo: pass

#---
#
long task to interrupt
#
@transform(create_initial_files, suffix(".start"), ".output")
def long_task(input_files, output_file):

with open(output_file, "w") as ff:
ff.write("Unfinished...")
sleep for 2 seconds here so you can interrupt me
sys.stderr.write("Job started. Press ^C to interrupt me now...\n")
time.sleep(2)
ff.write("\nFinished")
sys.stderr.write("Job completed.\n")

Run
pipeline_run([long_task])

When this script runs, it pauses in the middle with this message:

Job started. Press ^C to interrupt me now...

If you interrupted the script by pressing Control-C at this point, you will see that job1.output contains
only Unfinished.... However, if you should rerun the interrupted pipeline again, Ruffus ignores the
corrupt, incomplete file:

>>> pipeline_run([long_task])
Job started. Press ^C to interrupt me now...
Job completed

And if you had run pipeline_printout:

40 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

>>> pipeline_printout(sys.stdout, [long_task], verbose=3)
__
Tasks which will be run:

Task = long_task
Job = [job1.start

-> job1.output]
Job needs update: Previous incomplete run leftover: [job1.output]

We can see that Ruffus magically knows that the previous run was incomplete, and that job1.output
is detritus that needs to be discarded.

1.12.3 Checkpointing: only log completed jobs

All is revealed if you were to look in the working directory. Ruffus has created a file called
.ruffus_history.sqlite. In this SQLite database, Ruffus logs only those files which are the
result of a completed job, all other files are suspect. This file checkpoint database is a fail-safe, not a
substitute for checking file modification times. If the Input or Output files are modified, the pipeline will
rerun.

By default, Ruffus saves only file timestamps to the SQLite database but you can also add a check-
sum of the pipeline task function body or parameters. This behaviour can be controlled by setting the
checksum_level parameter in pipeline_run(). For example, if you do not want to save any
timestamps or checksums:

pipeline_run(checksum_level = 0)

CHECKSUM_FILE_TIMESTAMPS = 0 # only rerun when the file timestamps are out of date (classic mode)
CHECKSUM_HISTORY_TIMESTAMPS = 1 # Default: also rerun when the history shows a job as being out of date
CHECKSUM_FUNCTIONS = 2 # also rerun when function body has changed
CHECKSUM_FUNCTIONS_AND_PARAMS = 3 # also rerun when function parameters or function body change

Note: Checksums are calculated from the pickled string for the function code and parameters. If pickling
fails, Ruffus will degrade gracefully to saving just the timestamp in the SQLite database.

1.12.4 Do not share the same checkpoint file across for multiple pipelines!

The name of the Ruffus python script is not saved in the checkpoint file along side timestamps and check-
sums. That means that you can rename your pipeline source code file without having to rerun the pipeline!
The tradeoff is that if multiple pipelines are run from the same directory, and save their histories to the
same SQlite database file, and if their file names overlap (all of these are bad ideas anyway!), this is bound
to be a source of confusion.

Luckily, the name and path of the checkpoint file can be also changed for each pipeline

1.12.5 Setting checkpoint file names

Warning: Some file systems do not appear to support SQLite at all:
There are reports that SQLite databases have file locking problems on Lustre.
The best solution would be to keep the SQLite database on an alternate compatible file system away
from the working directory if possible.

1.12. Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions 41

https://sqlite.org/
http://docs.python.org/2/library/pickle.html
http://beets.radbox.org/blog/sqlite-nightmare.html

ruffus Documentation, Release 2.6.3

environment variable DEFAULT_RUFFUS_HISTORY_FILE

The name of the checkpoint file is the value of the environment variable
DEFAULT_RUFFUS_HISTORY_FILE.

export DEFAULT_RUFFUS_HISTORY_FILE=/some/where/.ruffus_history.sqlite

This gives considerable flexibility, and allows a system-wide policy to be set so that all Ruffus checkpoint
files are set logically to particular paths.

Note: It is your responsibility to make sure that the requisite destination directories for the checkpoint
files exist beforehand!

Where this is missing, the checkpoint file defaults to .ruffus_history.sqlite in your working
directory

Setting the checkpoint file name manually

This checkpoint file name can always be overridden as a parameter to Ruffus functions:

pipeline_run(history_file = "XXX")
pipeline_printout(history_file = "XXX")
pipeline_printout_graph(history_file = "XXX")

There is also built in support in Ruffus.cmdline. So if you use this module, you can simply add to
your command line:

use a custom checkpoint file
myscript --checksum_file_name .myscript.ruffus_history.sqlite

This takes precedence over everything else.

1.12.6 Useful checkpoint file name policies DEFAULT_RUFFUS_HISTORY_FILE

If the pipeline script is called test/bin/scripts/run.me.py, then these are the resulting check-
point files locations:

Example 1: same directory, different name

If the environment variable is:

export DEFAULT_RUFFUS_HISTORY_FILE=.{basename}.ruffus_history.sqlite

Then the job checkpoint database for run.me.py will be .run.me.ruffus_history.sqlite

/test/bin/scripts/run.me.py
/common/path/for/job_history/scripts/.run.me.ruffus_history.sqlite

Example 2: Different directory, same name

export DEFAULT_RUFFUS_HISTORY_FILE=/common/path/for/job_history/.{basename}.ruffus_history.sqlite

/common/path/for/job_history/.run.me.ruffus_history.sqlite

42 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Example 2: Different directory, same name but keep one level of subdirectory to disambiguate

export DEFAULT_RUFFUS_HISTORY_FILE=/common/path/for/job_history/{subdir[0]}/.{basename}.ruffus_history.sqlite

/common/path/for/job_history/scripts/.run.me.ruffus_history.sqlite

Example 2: nested in common directory

export DEFAULT_RUFFUS_HISTORY_FILE=/common/path/for/job_history/{path}/.{basename}.ruffus_history.sqlite

/common/path/for/job_history/test/bin/scripts/.run.me.ruffus_history.sqlite

1.12.7 Regenerating the checkpoint file

Occasionally you may need to re-generate the checkpoint file.

This could be necessary:

• because you are upgrading from a previous version of Ruffus without checkpoint file support

• on the rare occasions when the SQLite file becomes corrupted and has to deleted

• if you wish to circumvent the file checking of Ruffus after making some manual changes!

To do this, it is only necessary to call pipeline_run appropriately:

CHECKSUM_REGENERATE = 2
pipeline(touch_files_only = CHECKSUM_REGENERATE)

Similarly, if you are using Ruffus.cmdline, you can call:

myscript --recreate_database

Note that this regenerates the checkpoint file to reflect the existing Input, Output files on disk. In other
words, the onus is on you to make sure there are no half-formed, corrupt files. On the other hand, the
pipeline does not need to have been previously run successfully for this to work. Essentially, Ruffus,
pretends to run the pipeline, while logging all the files with consistent file modication times, stopping at
the first tasks which appear out of date or incomplete.

1.12.8 Rules for determining if files are up to date

The following simple rules are used by Ruffus.

1. The pipeline stage will be rerun if:

• If any of the Input files are new (newer than the Output files)

• If any of the Output files are missing

2. In addition, it is possible to run jobs which create files from scratch.

• If no Input file names are supplied, the job will only run if any output file is missing.

3. Finally, if no Output file names are supplied, the job will always run.

1.12. Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions 43

ruffus Documentation, Release 2.6.3

1.12.9 Missing files generate exceptions

If the inputs files for a job are missing, the task function will have no way to produce its output. In this
case, a MissingInputFileError exception will be raised automatically. For example,

task.MissingInputFileError: No way to run job: Input file ['a.1'] does not exist
for Job = ["a.1" -> "a.2", "A file"]

1.12.10 Caveats: Coarse Timestamp resolution

Note that modification times have precision to the nearest second under some older file systems
(ext2/ext3?). This may be also be true for networked file systems.

Ruffus supplements the file system time resolution by independently recording the timestamp at full OS
resolution (usually to at least the millisecond) at job completion, when presumably the Output files will
have been created.

However, Ruffus only does this if the discrepancy between file time and system time is less than a second
(due to poor file system timestamp resolution). If there are large mismatches between the two, due for
example to network time slippage, misconfiguration etc, Ruffus reverts to using the file system time and
adds a one second delay between jobs (via time.sleep()) to make sure input and output file stamps
are different.

If you know that your filesystem has coarse-grained timestamp resolution, you can always re-
vert to this very conservative behaviour, at the prices of some annoying 1s pauses, by setting
pipeline_run(one_second_per_job = True)

1.12.11 Flag files: Checkpointing for the paranoid

One other way of checkpointing your pipelines is to create an extra “flag” file as an additional Output file
name. The flag file is only created or updated when everything else in the job has completed successifully
and written to disk. A missing or out of date flag file then would be a sign for Ruffus that the task never
completed properly in the first place.

This used to be much the best way of performing checkpointing in Ruffus and is still the most bulletproof
way of proceeding. For example, even the loss or corruption of the checkpoint file, would not affect things
greatly.

Nevertheless flag files are largely superfluous in modern Ruffus.

1.13 Chapter 11: Pipeline topologies and a compendium of Ruffus
decorators

See also:

• Manual Table of Contents

• decorators

1.13.1 Overview

Computational pipelines transform your data in stages until the final result is produced.

44 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

You can visualise your pipeline data flowing like water down a system of pipes. Ruffus has many ways of
joining up your pipes to create different topologies.

Note: The best way to design a pipeline is to:
• Write down the file names of the data as it flows across your pipeline.

• Draw lines between the file names to show how they should be connected together.

1.13.2 @transform

So far, our data files have been flowing through our pipelines independently in lockstep.

If we drew a graph of the data files moving through the pipeline, all of our flowcharts would look like
something like this.

The @transform decorator connects up your data files in 1 to 1 operations, ensuring that for every Input,
a corresponding Output is generated, ready to got into the next pipeline stage. If we start with three sets
of starting data, we would end up with three final sets of results.

1.13.3 A bestiary of Ruffus decorators

Very often, we would like to transform our data in more complex ways, this is where other Ruffus decora-
tors come in.

1.13.4 @originate

• Introduced in Chapter 3 More on @transform-ing data and @originate, @originate generates Output files
from scratch without the benefits of any Input files.

1.13.5 @merge

• A many to one operator.

• The last decorator at the far right to the figure, @merge merges multiple Input into one Output.

1.13.6 @split

• A one to many operator,

• @split is the evil twin of @merge. It takes a single set of Input and splits them into multiple smaller pieces.

1.13. Chapter 11: Pipeline topologies and a compendium of Ruffus decorators 45

ruffus Documentation, Release 2.6.3

• The best part of @split is that we don’t necessarily have to decide ahead of time how many smaller pieces it
should produce. If we have encounter a larger file, we might need to split it up into more fragments for greater
parallelism.

• Since @split is a one to many operator, if you pass it many inputs (e.g. via @transform, it performs an implicit
@merge step to make one set of Input that you can redistribute into a different number of pieces. If you are
looking to split each Input into further smaller fragments, then you need @subdivide

1.13.7 @subdivide

• A many to even more operator.

• It takes each of multiple Input, and further subdivides them.

• Uses suffix(), formatter() or regex() to generate Output names from its Input files but like @split, we don’t
have to decide ahead of time how many smaller pieces each Input should be further divided into. For example,
a large Input files might be subdivided into 7 pieces while the next job might, however, split its Input into just
4 pieces.

1.13.8 @collate

• A many to fewer operator.

• @collate is the opposite twin of subdivide: it takes multiple Output and groups or collates them into bundles
of Output.

• @collate uses formatter() or regex() to generate Output names.

• All Input files which map to the same Output are grouped together into one job (one task function call) which
produces one Output.

1.13.9 Combinatorics

More rarely, we need to generate a set of Output based on a combination or permutation or product of
the Input.

For example, in bioinformatics, we might need to look for all instances of a set of genes in the genomes
of a different number of species. In other words, we need to find the @product of XXX genes x YYY
species.

Ruffus provides decorators modelled on the “Combinatoric generators” in the Standard Python itertools
library.

To use combinatoric decorators, you need to explicitly include them from Ruffus:

import ruffus
from ruffus import *
from ruffus.combinatorics import *

46 Chapter 1. Start Here:

http://docs.python.org/2/library/itertools.html

ruffus Documentation, Release 2.6.3

1.13.10 @product

• Given several sets of Input, it generates all versus all Output. For example, if there are four sets of Input files,
@product will generate WWW x XXX x YYY x ZZZ Output.

• Uses formatter to generate unique Output names from components parsed from any parts of any specified files
in all Input sets. In the above example, this allows the generation of WWW x XXX x YYY x ZZZ unique
names.

1.13.11 @combinations

• Given one set of Input, it generates the combinations of r-length tuples among them.

• Uses formatter to generate unique Output names from components parsed from any parts of any specified files
in all Input sets.

• For example, given Input called A, B and C, it will generate: A-B, A-C, B-C

• The order of Input items is ignored so either A-B or B-A will be included, not both

• Self-vs-self combinations (A-A) are excluded.

1.13.12 @combinations_with_replacement

• Given one set of Input, it generates the combinations of r-length tuples among them but includes self-vs-self
conbinations.

• Uses formatter to generate unique Output names from components parsed from any parts of any specified files
in all Input sets.

• For example, given Input called A, B and C, it will generate: A-A, A-B, A-C, B-B, B-C, C-C

1.13.13 @permutations

• Given one set of Input, it generates the permutations of r-length tuples among them. This excludes self-vs-self
combinations but includes all orderings (A-B and B-A).

• Uses formatter to generate unique Output names from components parsed from any parts of any specified files
in all Input sets.

• For example, given Input called A, B and C, it will generate: A-A, A-B, A-C, B-A, B-C, C-A, C-B

1.14 Chapter 12: Splitting up large tasks / files with @split

See also:

• Manual Table of Contents

• @split syntax

• Example code for this chapter

1.14. Chapter 12: Splitting up large tasks / files with @split 47

ruffus Documentation, Release 2.6.3

1.14.1 Overview

A common requirement in computational pipelines is to split up a large task into small jobs which can be
run on different processors, (or sent to a computational cluster). Very often, the number of jobs depends
dynamically on the size of the task, and cannot be known beforehand.

Ruffus uses the @split decorator to indicate that the task function will produce an indeterminate number
of independent Outputs from a single Input.

1.14.2 Example: Calculate variance for a large list of numbers in parallel

Suppose we wanted to calculate the variance for 100,000 numbers, how can we parallelise the calculation
so that we can get an answer as speedily as possible?

We need to

• break down the problem into manageable chunks

• solve these in parallel, possibly on a computational cluster and then

• merge the partial solutions back together for a final result.

To complicate things, we usually do not want to hard-code the number of parallel chunks beforehand. The
degree of parallelism is often only apparent as we process our data.

Ruffus was designed to solve such problems which are common, for example, in bioinformatics and
genomics.

A flowchart for our variance problem might look like this:

(In this toy example, we create our own starting data in create_random_numbers().)

1.14.3 Output files for @split

The Ruffus decorator @split is designed specifically with this run-time flexibility in mind:

@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):

pass

This will split the incoming input_file_names into NNN number of outputs where NNN is not pre-
determined:

The output (second) parameter of @split often contains a glob pattern like the *.chunks above.

Only after the task function has completed, will Ruffus match the Output parameter (*.chunks) against
the files which have been created by split_problem() (e.g. 1.chunks, 2.chunks, 3.chunks)

48 Chapter 1. Start Here:

http://en.wikipedia.org/wiki/Variance
http://docs.python.org/library/glob.html

ruffus Documentation, Release 2.6.3

1.14.4 Be careful in specifying Output globs

Note that it is your responsibility to keep the Output specification tight enough so that Ruffus does not
pick up extraneous files.

You can specify multiple glob patterns to match all the files which are the result of the splitting task
function. These can even cover different directories, or groups of file names. This is a more extreme
example:

@split("input.file", ['a*.bits', 'b*.pieces', 'somewhere_else/c*.stuff'])
def split_function (input_filename, output_files):

"Code to split up 'input.file'"

1.14.5 Clean up previous pipeline runs

Problem arise when the current directory contains results of previous pipeline runs.

• For example, if the previous analysis involved a large data set, there might be 3 chunks: 1.chunks,
2.chunks, 3.chunks.

• In the current analysis, there might be a smaller data set which divides into only 2 chunks,
1.chunks and 2.chunks.

• Unfortunately, 3.chunks from the previous run is still hanging around and will be included erro-
neously by the glob *.chunks.

Warning: Your first duty in @split tasks functions should be to clean up

To help you clean up thoroughly, Ruffus initialises the output parameter to all files which match specifi-
cation.

The first order of business is thus invariably to cleanup (delete with os.unlink) all files in Output.

#---
#
split initial file
#
@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):

"""
splits random numbers file into xxx files of chunk_size each

"""
#
clean up any files from previous runs
#
#for ff in glob.glob("*.chunks"):
for ff in input_file_names:

os.unlink(ff)

(The first time you run the example code, *.chunks will initialise output_files to an empty list.)

1.14.6 1 to many

@split is a one to many operator because its outputs are a list of independent items.

If @split generates 5 files, then this will lead to 5 jobs downstream.

1.14. Chapter 12: Splitting up large tasks / files with @split 49

http://docs.python.org/library/glob.html

ruffus Documentation, Release 2.6.3

This means we can just connect our old friend @transform to our pipeline and the results of @split will
be analysed in parallel. This code should look familiar:

#---
#
Calculate sum and sum of squares for each chunk file
#
@transform(split_problem, suffix(".chunks"), ".sums")
def sum_of_squares (input_file_name, output_file_name):

pass

Which results in output like this:

>>> pipeline_run()
Job = [[random_numbers.list] -> *.chunks] completed

Completed Task = split_problem
Job = [1.chunks -> 1.sums] completed
Job = [10.chunks -> 10.sums] completed
Job = [2.chunks -> 2.sums] completed
Job = [3.chunks -> 3.sums] completed
Job = [4.chunks -> 4.sums] completed
Job = [5.chunks -> 5.sums] completed
Job = [6.chunks -> 6.sums] completed
Job = [7.chunks -> 7.sums] completed
Job = [8.chunks -> 8.sums] completed
Job = [9.chunks -> 9.sums] completed

Completed Task = sum_of_squares

Have a look at the Example code for this chapter

1.14.7 Nothing to many

Normally we would use @originate to create files from scratch, for example at the beginning of the
pipeline.

However, sometimes, it is not possible to determine ahead of time how many files you will be creating
from scratch. @split can also be useful even in such cases:

from random import randint
from ruffus import *
import os

Create between 2 and 5 files
@split(None, "*.start")
def create_initial_files(no_input_file, output_files):

cleanup first
for oo in output_files:

os.unlink(oo)
make new files
for ii in range(randint(2,5)):

open("%d.start" % ii, "w")

@transform(create_initial_files, suffix(".start"), ".processed")
def process_files(input_file, output_file):

open(output_file, "w")

pipeline_run()

Giving:

50 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

>>> pipeline_run()
Job = [None -> *.start] completed

Completed Task = create_initial_files
Job = [0.start -> 0.processed] completed
Job = [1.start -> 1.processed] completed

Completed Task = process_files

1.15 Chapter 13: @merge multiple input into a single result

See also:

• Manual Table of Contents

• @merge syntax

• Example code for this chapter

1.15.1 Overview of @merge

The previous chapter explained how Ruffus allows large jobs to be split into small pieces with @split
and analysed in parallel using for example, our old friend @transform.

Having done this, our next task is to recombine the fragments into a seamless whole.

This is the role of the @merge decorator.

1.15.2 @merge is a many to one operator

@transform tasks multiple inputs and produces a single output, Ruffus is again agnostic as to the sort
of data contained within this single output. It can be a single (string) file name, an arbitrary complicated
nested structure with numbers, objects etc. Or even a list.

The main thing is that downstream tasks will interpret this output as a single entity leading to a single job.

@split and @merge are, in other words, about network topology.

Because of this @merge is also very useful for summarising the progress in our pipeline. At key selected
points, we can gather data from the multitude of data or disparate inputs and @merge them to a single set
of summaries.

1.15.3 Example: Combining partial solutions: Calculating variances

The previous chapter we had almost completed all the pieces of our flowchart:

1.15. Chapter 13: @merge multiple input into a single result 51

ruffus Documentation, Release 2.6.3

What remains is to take the partial solutions from the different .sums files and turn these into the variance
as follows:

variance = (sum_squared - sum * sum / N)/N

where N is the number of values

See the wikipedia entry for a discussion of why this is a very naive approach.

To do this, all we have to do is iterate through all the values in *.sums, add up the sums and
sum_squared, and apply the above (naive) formula.

#
@merge files together
#
@merge(sum_of_squares, "variance.result")
def calculate_variance (input_file_names, output_file_name):

"""
Calculate variance naively
"""
#
initialise variables
#
all_sum_squared = 0.0
all_sum = 0.0
all_cnt_values = 0.0
#
added up all the sum_squared, and sum and cnt_values from all the chunks
#
for input_file_name in input_file_names:

sum_squared, sum, cnt_values = map(float, open(input_file_name).readlines())
all_sum_squared += sum_squared
all_sum += sum
all_cnt_values += cnt_values

all_mean = all_sum / all_cnt_values
variance = (all_sum_squared - all_sum * all_mean)/(all_cnt_values)
#
print output
#
open(output_file_name, "w").write("%s\n" % variance)

This results in the following equivalent function call:

calculate_variance (["1.sums", "2.sums", "3.sums",
"4.sums", "5.sums", "6.sums",
"7.sums", "8.sums", "9.sums, "10.sums"], "variance.result")

and the following display:

>>> pipeline_run()
Job = [[1.sums, 10.sums, 2.sums, 3.sums, 4.sums, 5.sums, 6.sums, 7.sums, 8.sums, 9.sums] -> variance.result] completed

Completed Task = calculate_variance

The final result is in variance.result

Have a look at the complete example code for this chapter.

52 Chapter 1. Start Here:

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

ruffus Documentation, Release 2.6.3

1.16 Chapter 14: Multiprocessing, drmaa and Computation Clusters

See also:

• Manual Table of Contents

• @jobs_limit syntax

• pipeline_run() syntax

• drmaa_wrapper.run_job() syntax

Note: Remember to look at the example code:

• Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters

1.16.1 Overview

Multi Processing

Ruffus uses python multiprocessing to run each job in a separate process.

This means that jobs do not necessarily complete in the order of the defined parameters. Task hierachies
are, of course, inviolate: upstream tasks run before downstream, dependent tasks.

Tasks that are independent (i.e. do not precede each other) may be run in parallel as well.

The number of concurrent jobs can be set in pipeline_run:

pipeline_run([parallel_task], multiprocess = 5)

If multiprocess is set to 1, then jobs will be run on a single process.

Data sharing

Running jobs in separate processes allows Ruffus to make full use of the multiple processors in modern
computers. However, some multiprocessing guidelines should be borne in mind when writing Ruffus
pipelines. In particular:

• Try not to pass large amounts of data between jobs, or at least be aware that this has to be marshalled
across process boundaries.

• Only data which can be pickled can be passed as parameters to Ruffus task functions. Happily, that
applies to almost any native Python data type. The use of the rare, unpicklable object will cause
python to complain (fail) loudly when Ruffus pipelines are run.

1.16.2 Restricting parallelism with @jobs_limit

Calling pipeline_run(multiprocess = NNN) allows multiple jobs (from multiple independent tasks) to be
run in parallel. However, there are some operations that consume so many resources that we might want
them to run with less or no concurrency.

For example, we might want to download some files via FTP but the server restricts requests from each
IP address. Even if the rest of the pipeline is running 100 jobs in parallel, the FTP downloading must
be restricted to 2 files at a time. We would really like to keep the pipeline running as is, but let this one
operation run either serially, or with little concurrency.

1.16. Chapter 14: Multiprocessing, drmaa and Computation Clusters 53

http://docs.python.org/library/multiprocessing.html
http://docs.python.org/library/multiprocessing.html#multiprocessing-programming
http://docs.python.org/library/pickle.html

ruffus Documentation, Release 2.6.3

• pipeline_run(multiprocess = NNN) sets the pipeline-wide concurrency but

• @jobs_limit(MMM) sets concurrency at MMM only for jobs in the decorated task.

The optional name (e.g. @jobs_limit(3, "ftp_download_limit")) allows the same limit to
be shared across multiple tasks. To be pedantic: a limit of 3 jobs at a time would be applied across all
tasks which have a @jobs_limit named "ftp_download_limit".

The example code uses up to 10 processes across the pipeline, but runs the stage1_big and
stage1_small tasks 3 at a time (shared across both tasks). stage2 jobs run 5 at a time.

1.16.3 Using drmaa to dispatch work to Computational Clusters or Grid engines
from Ruffus jobs

Ruffus has been widely used to manage work on computational clusters or grid engines. Though Ruffus
task functions cannot (yet!) run natively and transparently on remote cluster nodes, it is trivial to dispatch
work across the cluster.

From version 2.4 onwards, Ruffus includes an optional helper module which interacts with python bind-
ings for the widely used drmaa Open Grid Forum API specification. This allows jobs to dispatch work to
a computational cluster and wait until it completes.

Here are the necessary steps

1) Use a shared drmaa session:

Before your pipeline runs:

#
start shared drmaa session for all jobs / tasks in pipeline
#
import drmaa
drmaa_session = drmaa.Session()
drmaa_session.initialize()

Cleanup after your pipeline completes:

#
pipeline functions go here
#
if __name__ == '__main__':

drmaa_session.exit()

2) import ruffus.drmaa_wrapper

• The optional ruffus.drmaa_wrapper module needs to be imported explicitly:

imported ruffus.drmaa_wrapper explicitly
from ruffus.drmaa_wrapper import run_job, error_drmaa_job

3) call drmaa_wrapper.run_job()

drmaa_wrapper.run_job() dispatches the work to a cluster node within a normal Ruffus job and waits for
completion

This is the equivalent of os.system or subprocess.check_output but the code will run remotely as specified:

54 Chapter 1. Start Here:

https://github.com/drmaa-python/drmaa-python
https://github.com/drmaa-python/drmaa-python
http://en.wikipedia.org/wiki/DRMAA
http://docs.python.org/2/library/os.html#os.system
http://docs.python.org/2/library/subprocess.html#subprocess.check_call

ruffus Documentation, Release 2.6.3

ruffus.drmaa_wrapper.run_job
stdout_res, stderr_res = run_job(cmd_str = "touch " + output_file,

job_name = job_name,
logger = logger,
drmaa_session = drmaa_session,
run_locally = options.local_run,
job_other_options = job_other_options)

The complete code is available here

• drmaa_wrapper.run_job() is a convenience wrapper around the python drmaa bindings RunJob func-
tion. It takes care of writing drmaa job templates for you.

• Each call creates a separate drmaa job template.

4) Use multithread: pipeline_run(multithread = NNN)

Warning: drmaa_wrapper.run_job()
requires pipeline_run (multithread = NNN)
and will not work with pipeline_run (multiprocess = NNN)

Using multithreading rather than multiprocessing

• allows the drmaa session to be shared

• prevents “processing storms” which lock up the queue submission node when hundreds or thou-
sands of grid engine / cluster commands complete at the same time.

pipeline_run (..., multithread = NNN, ...)

or if you are using ruffus.cmdline:

cmdline.run (options, multithread = options.jobs)

Normally multithreading reduces the amount of parallelism in python due to the python Global interpreter
Lock (GIL). However, as the work load is almost entirely on another computer (i.e. a cluster / grid engine
node) with a separate python interpreter, any cost benefit calculations of this sort are moot.

5) Develop locally

drmaa_wrapper.run_job() provides two convenience parameters for developing grid engine pipelines:

• commands can run locally, i.e. on the local machine rather than on cluster nodes:

run_job(cmd_str, run_locally = True)

• Output files can be touched, i.e. given the appearance of the work having being done without actually
running the commands

run_job(cmd_str, touch_only = True)

1.16. Chapter 14: Multiprocessing, drmaa and Computation Clusters 55

https://github.com/drmaa-python/drmaa-python
http://drmaa-python.readthedocs.org/en/latest/tutorials.html#waiting-for-a-job
http://en.wikipedia.org/wiki/Global_Interpreter_Lock
http://en.wikipedia.org/wiki/Global_Interpreter_Lock
http://en.wikipedia.org/wiki/Touch_(Unix)

ruffus Documentation, Release 2.6.3

1.16.4 Forcing a pipeline to appear up to date

Sometimes, we know that a pipeline has run to completion, that everything is up-to-date. However, Ruffus
still insists on the basis of file modification times that you need to rerun.

For example, sometimes a trivial accounting modification needs to be made to a data file. Even though you
know that this changes nothing in practice, Ruffus will detect the modification and ask to rerun everything
from that point forwards.

One way to convince Ruffus that everything is fine is to manually touch all subsequent data files one by
one in sequence so that the file timestamps follow the appropriate progression.

You can also ask Ruffus to do this automatically for you by running the pipeline in touch mode:

pipeline_run(touch_files_only = True)

pipeline_run will run your pipeline script normally working backwards from any specified final target, or
else the last task in the pipeline. It works out where it should begin running, i.e. with the first out-of-date
data files. After that point, instead of calling your pipeline task functions, each missing or out-of-date file
is touch-ed in turn so that the file modification dates follow on successively.

This turns out to be useful way to check that your pipeline runs correctly by creating a series of dummy
(empty files). However, Ruffus does not know how to read your mind to know which files to create from
@split or @subdivide tasks.

Using ruffus.cmdline from version 2.4, you can just specify:

your script --touch_files_only [--other_options_of_your_own_etc]

1.17 Chapter 15: Logging progress through a pipeline

See also:

• Manual Table of Contents

Note: Remember to look at the example code

1.17.1 Overview

There are two parts to logging with Ruffus:

• Logging progress through the pipeline

This produces the sort of output displayed in this manual:

>>> pipeline_run([parallel_io_task])
Task = parallel_io_task

Job = ["a.1" -> "a.2", "A file"] completed
Job = ["b.1" -> "b.2", "B file"] unnecessary: already up to date

Completed Task = parallel_io_task

• Logging your own messages from within your pipelined functions.

Because Ruffus may run each task function in separate process on a separate CPU (mul-
tiprocessing), some attention has to be paid to how to send and synchronise your log mes-
sages across process boundaries.

56 Chapter 1. Start Here:

http://en.wikipedia.org/wiki/Touch_(Unix)
http://en.wikipedia.org/wiki/Touch_(Unix)
http://en.wikipedia.org/wiki/Touch_(Unix)

ruffus Documentation, Release 2.6.3

We shall deal with these in turn.

1.17.2 Logging task/job completion

By default, Ruffus logs each task and each job as it is completed to sys.stderr.

By default, Ruffus logs to STDERR: pipeline_run(logger = stderr_logger).

If you want to turn off all tracking messages as the pipeline runs, apart from setting verbose = 0, you
can also use the aptly named Ruffus black_hole_logger:

pipeline_run(logger = black_hole_logger)

Controlling logging verbosity

pipeline_run() currently has five levels of verbosity, set by the optional verbose parameter which de-
faults to 1:

verbose = 0: nothing
verbose = 1: logs completed jobs/tasks;
verbose = 2: logs up to date jobs in incomplete tasks
verbose = 3: logs reason for running job
verbose = 4: logs messages useful only for debugging ruffus pipeline code

verbose > 5 are intended for debugging Ruffus by the developers and the details are liable
to change from release to release

1.17.3 Use ruffus.cmdline

As always, it is easiest to use ruffus.cmdline.

Set your script to

• write messages to STDERR with the --verbose option and

• to a log file with the --log_file option.

from ruffus import *

Python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

@transform(["job1.input"], suffix(".input"), ".output1"),
def first_task(input_file, output_file):

pass

pipeline_run(logger=logger)

1.17.4 Customising logging

You can also specify exactly how logging works by providing a logging object to pipeline_run() . This
log object should have debug() and info() methods.

Instead of writing your own, it is usually more convenient to use the python logging module which pro-
vides logging classes with rich functionality.

1.17. Chapter 15: Logging progress through a pipeline 57

http://docs.python.org/2/library/sys.html#sys.stderr
http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html

ruffus Documentation, Release 2.6.3

The example code sets up a logger to a rotating set of files

1.17.5 Log your own messages

You need to take a little care when logging your custom messages within your pipeline.

• If your Ruffus pipeline may run in parallel, make sure that logging is synchronised.

• If your Ruffus pipeline may run across separate processes, send your logging object across process
boundaries.

logging objects can not be pickled and shared naively across processes. Instead, we need to create proxies
which forward the logging to a single shared log.

The ruffus.proxy_logger module provides an easy way to share logging objects among jobs. This requires
just two simple steps:

Note:
• This is a good template for sharing non-picklable objects across processes.

1. Set up logging

Things are easiest if you are using ruffus.cmdline:

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

Otherwise, manually:

from ruffus.proxy_logger import *
(logger,
logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,

"my_logger",
{"file_name" :"/my/lg.log"})

2. Share the proxy

Now, pass:

• logger (which forwards logging calls across jobs) and

• logging_mutex (which prevents different jobs which are logging simultaneously from being
jumbled up)

to each job:

@transform(initial_file,
suffix(".input"),
".output1",
logger, logging_mutex), # pass log and synchronisation as parameters

def first_task(input_file, output_file,
logger, logging_mutex): # pass log and synchronisation as parameters

pass

synchronise logging

58 Chapter 1. Start Here:

http://docs.python.org/library/logging.html
http://docs.python.org/library/pickle.html
http://docs.python.org/library/logging.html
http://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled

ruffus Documentation, Release 2.6.3

with logging_mutex:
logger.info("Here we go logging...")

1.18 Chapter 16: @subdivide tasks to run efficiently and regroup
with @collate

See also:

• Manual Table of Contents

• @subdivide syntax

• @collate syntax

1.18.1 Overview

In Chapter 12 and Chapter 13, we saw how a large task can be @split into small jobs to be analysed
efficiently in parallel. Ruffus can then @merge these back together to give a single, unified result.

This assumes that your pipeline is processing one item at a time. Usually, however, we will have, for
example, 10 large pieces of data in play, each of which has to be subdivided into smaller pieces for
analysis before being put back together.

This is the role of @subdivide and @subdivide.

Like @split, the number of output files @subdivide produces for each Input is not predetermined.

On the other hand, these output files should be named in such a way that they can later be grouped back
together later using @subdivide.

This will be clearer with some worked examples.

1.18.2 @subdivide in parallel

Let us start from 3 files with varying number of lines. We wish to process these two lines at a time but we
do not know ahead of time how long each file is:

from ruffus import *
import os, random, sys

Create files a random number of lines
@originate(["a.start",

"b.start",
"c.start"])

def create_test_files(output_file):
cnt_lines = random.randint(1,3) * 2
with open(output_file, "w") as oo:

for ii in range(cnt_lines):
oo.write("data item = %d\n" % ii)

print " %s has %d lines" % (output_file, cnt_lines)

#
subdivide the input files into NNN fragment files of 2 lines each
#

1.18. Chapter 16: @subdivide tasks to run efficiently and regroup with @collate 59

ruffus Documentation, Release 2.6.3

@subdivide(create_test_files,
formatter(),
"{path[0]}/{basename[0]}.*.fragment",
"{path[0]}/{basename[0]}")

def subdivide_files(input_file, output_files, output_file_name_stem):
#
cleanup any previous results
#
for oo in output_files:

os.unlink(oo)
#
Output files contain two lines each
(new output files every even line)
#
cnt_output_files = 0
for ii, line in enumerate(open(input_file)):

if ii % 2 == 0:
cnt_output_files += 1
output_file_name = "%s.%d.fragment" % (output_file_name_stem, cnt_output_files)
output_file = open(output_file_name, "w")
print " Subdivide %s -> %s" % (input_file, output_file_name)

output_file.write(line)

#
Analyse each fragment independently
#
@transform(subdivide_files, suffix(".fragment"), ".analysed")
def analyse_fragments(input_file, output_file):

print " Analysing %s -> %s" % (input_file, output_file)
with open(output_file, "w") as oo:

for line in open(input_file):
oo.write("analysed " + line)

This produces the following output:

>>> pipeline_run(verbose = 1)
a.start has 2 lines

Job = [None -> a.start] completed
b.start has 6 lines

Job = [None -> b.start] completed
c.start has 6 lines

Job = [None -> c.start] completed
Completed Task = create_test_files

Subdivide a.start -> /home/lg/temp/a.1.fragment
Job = [a.start -> a.*.fragment, a] completed

Subdivide b.start -> /home/lg/temp/b.1.fragment
Subdivide b.start -> /home/lg/temp/b.2.fragment
Subdivide b.start -> /home/lg/temp/b.3.fragment

Job = [b.start -> b.*.fragment, b] completed

Subdivide c.start -> /home/lg/temp/c.1.fragment
Subdivide c.start -> /home/lg/temp/c.2.fragment
Subdivide c.start -> /home/lg/temp/c.3.fragment

Job = [c.start -> c.*.fragment, c] completed

60 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Completed Task = subdivide_files

Analysing /home/lg/temp/a.1.fragment -> /home/lg/temp/a.1.analysed
Job = [a.1.fragment -> a.1.analysed] completed

Analysing /home/lg/temp/b.1.fragment -> /home/lg/temp/b.1.analysed
Job = [b.1.fragment -> b.1.analysed] completed

[...SEE EXAMPLE CODE FOR MORE LINES ...]

Completed Task = analyse_fragments

a.start has two lines and results in a single .fragment file, while there are 3 b.*.fragment
files because it has 6 lines. Whatever their origin, all of the different fragment files are treated equally in
analyse_fragments() and processed (in parallel) in the same way.

1.18.3 Grouping using @collate

All that is left in our example is to reassemble the analysed fragments back together into 3 sets of results
corresponding to the original 3 pieces of starting data.

This is straightforward by eye: the file names all have the same pattern: [abc].*.analysed:

a.1.analysed -> a.final_result
b.1.analysed -> b.final_result
b.2.analysed -> ..
b.3.analysed -> ..
c.1.analysed -> c.final_result
c.2.analysed -> ..

@collate does something similar:

1. Specify a string substitution e.g. c.??.analysed -> c.final_result and

2. Ask ruffus to group together any Input (e.g. c.1.analysed, c.2.analysed) that
will result in the same Output (e.g. c.final_result)

#
``XXX.??.analysed -> XXX.final_result``
Group results using original names
#
@collate(analyse_fragments,

split file name into [abc].NUMBER.analysed
formatter("/(?P<NAME>[abc]+)\.\d+\.analysed$"),

"{path[0]}/{NAME[0]}.final_result")
def recombine_analyses(input_file_names, output_file):

with open(output_file, "w") as oo:
for input_file in input_file_names:

print " Recombine %s -> %s" % (input_file, output_file)
for line in open(input_file):

oo.write(line)

This produces the following output:

Recombine /home/lg/temp/a.1.analysed -> /home/lg/temp/a.final_result
Job = [[a.1.analysed] -> a.final_result] completed

Recombine /home/lg/temp/b.1.analysed -> /home/lg/temp/b.final_result
Recombine /home/lg/temp/b.2.analysed -> /home/lg/temp/b.final_result

1.18. Chapter 16: @subdivide tasks to run efficiently and regroup with @collate 61

ruffus Documentation, Release 2.6.3

Recombine /home/lg/temp/b.3.analysed -> /home/lg/temp/b.final_result
Job = [[b.1.analysed, b.2.analysed, b.3.analysed] -> b.final_result] completed

Recombine /home/lg/temp/c.1.analysed -> /home/lg/temp/c.final_result
Recombine /home/lg/temp/c.2.analysed -> /home/lg/temp/c.final_result
Recombine /home/lg/temp/c.3.analysed -> /home/lg/temp/c.final_result

Job = [[c.1.analysed, c.2.analysed, c.3.analysed] -> c.final_result] completed
Completed Task = recombine_analyses

Warning:
• Input file names are grouped together not in a guaranteed order.

For example, the fragment files may not be sent to
recombine_analyses(input_file_names, ...) in alphabetically
or any other useful order.
You may want to sort Input before concatenation.

• All Input are grouped together if they have both the same Output and Extra parameters. If any
string substitution is specified in any of the other Extra parameters to @subdivide, they must
give the same answers for Input in the same group.

1.19 Chapter 17: @combinations, @permutations and all versus all
@product

See also:

• Manual Table of Contents

• @combinations_with_replacement

• @combinations

• @permutations

• @product

• formatter()

Note: Remember to look at the example code:

• Chapter 17: Python Code for @combinations, @permutations and all versus all @product

1.19.1 Overview

A surprising number of computational problems involve some sort of all versus all calculations. Previ-
ously, this would have required all the parameters to be supplied using a custom function on the fly with
@files.

From version 2.4, Ruffus supports @combinations_with_replacement, @combinations, @permutations,
@product.

These provide as far as possible all the functionality of the four combinatorics iterators from the standard
python itertools functions of the same name.

62 Chapter 1. Start Here:

http://docs.python.org/2/library/itertools.html

ruffus Documentation, Release 2.6.3

1.19.2 Generating output with formatter()

String replacement always takes place via formatter(). Unfortunately, the other Ruffus workhorses of
regex() and suffix() do not have sufficient syntactic flexibility.

Each combinatorics decorator deals with multiple sets of inputs whether this might be:

• a self-self comparison (such as @combinations_with_replacement, @combinations, @permuta-
tions) or,

• a self-other comparison (@product)

The replacement strings thus require an extra level of indirection to refer to parsed components.

1. The first level refers to which set of inputs.

2. The second level refers to which input file in any particular set of inputs.

For example, if the inputs are [A1,A2],[B1,B2],[C1,C2] vs [P1,P2],[Q1,Q2],[R1,R2] vs
[X1,X2],[Y1,Y2],[Z1,Z2], then ’{basename[2][0]}’ is the basename for

• the third set of inputs (X,Y,Z) and

• the first file name string in each Input of that set (X1, Y1, Z1)

1.19.3 All vs all comparisons with @product

@product generates the Cartesian product between sets of input files, i.e. all vs all comparisons.

The effect is analogous to a nested for loop.

@product can be useful, for example, in bioinformatics for finding the corresponding genes (orthologues)
for a set of proteins in multiple species.

>>> from itertools import product
>>> # product('ABC', 'XYZ') --> AX AY AZ BX BY BZ CX CY CZ
>>> ["".join(a) for a in product('ABC', 'XYZ')]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

This example Calculates the @product of A,B and P,Q and X,Y files

from ruffus import *
from ruffus.combinatorics import *

Three sets of initial files
@originate(['a.start', 'b.start'])
def create_initial_files_ab(output_file):

with open(output_file, "w") as oo: pass

@originate(['p.start', 'q.start'])
def create_initial_files_pq(output_file):

with open(output_file, "w") as oo: pass

@originate([['x.1_start', 'x.2_start'],
['y.1_start', 'y.2_start']])

def create_initial_files_xy(output_file):
with open(output_file, "w") as oo: pass

@product
@product(create_initial_files_ab, # Input

formatter("(.start)$"), # match input file set # 1

1.19. Chapter 17: @combinations, @permutations and all versus all @product 63

http://docs.python.org/2/library/os.path.html#os.path.basename

ruffus Documentation, Release 2.6.3

create_initial_files_pq, # Input
formatter("(.start)$"), # match input file set # 2

create_initial_files_xy, # Input
formatter("(.start)$"), # match input file set # 3

"{path[0][0]}/" # Output Replacement string
"{basename[0][0]}_vs_" #
"{basename[1][0]}_vs_" #
"{basename[2][0]}.product", #

"{path[0][0]}", # Extra parameter: path for 1st set of files, 1st file name

["{basename[0][0]}", # Extra parameter: basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
"{basename[2][0]}", # 3rd
])

def product_task(input_file, output_parameter, shared_path, basenames):
print "# basenames = ", " ".join(basenames)
print "input_parameter = ", input_file
print "output_parameter = ", output_parameter, "\n"

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

basenames = a p x
input_parameter = ('a.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_p_vs_x.product

basenames = a p y
input_parameter = ('a.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_p_vs_y.product

basenames = a q x
input_parameter = ('a.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_q_vs_x.product

basenames = a q y
input_parameter = ('a.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_q_vs_y.product

basenames = b p x
input_parameter = ('b.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_p_vs_x.product

basenames = b p y
input_parameter = ('b.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_p_vs_y.product

basenames = b q x
input_parameter = ('b.start', 'q.start', 'x.start')

64 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

output_parameter = /home/lg/temp/b_vs_q_vs_x.product

basenames = b q y
input_parameter = ('b.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_q_vs_y.product

1.19.4 Permute all k-tuple orderings of inputs without repeats using @permuta-
tions

Generates the permutations for all the elements of a set of Input (e.g. A B C D),

• r-length tuples of input elements

• excluding repeated elements (A A)

• and order of the tuples is significant (both A B and B A).

>>> from itertools import permutations
>>> # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
>>> ["".join(a) for a in permutations("ABCD", 2)]
['AB', 'AC', 'AD', 'BA', 'BC', 'BD', 'CA', 'CB', 'CD', 'DA', 'DB', 'DC']

This following example calculates the @permutations of A,B,C,D files

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

@permutations
@permutations(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 2 at a time
2,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}.permutations",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
])

def permutations_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

1.19. Chapter 17: @combinations, @permutations and all versus all @product 65

ruffus Documentation, Release 2.6.3

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

1.19.5 Select unordered k-tuples within inputs excluding repeated elements using
@combinations

Generates the combinations for all the elements of a set of Input (e.g. A B C D),

• r-length tuples of input elements

• without repeated elements (A A)

• where order of the tuples is irrelevant (either A B or B A, not both).

@combinations can be useful, for example, in calculating a transition probability matrix for a set of states.
The diagonals are meaningless “self-self” transitions which are excluded.

>>> from itertools import combinations
>>> # combinations('ABCD', 3) --> ABC ABD ACD BCD
>>> ["".join(a) for a in combinations("ABCD", 3)]
['ABC', 'ABD', 'ACD', 'BCD']

This example calculates the @combinations of A,B,C,D files

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

@combinations
@combinations(create_initial_files_ABCD, # Input

formatter(), # match input files

66 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

tuple of 3 at a time
3,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}_vs_"
"{basename[2][1]}.combinations",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
"{basename[2][0]}", # 3rd
])

def combinations_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - B - C
A - B - D
A - C - D
B - C - D

1.19.6 Select unordered k-tuples within inputs including repeated elements with
@combinations_with_replacement

Generates the combinations_with_replacement for all the elements of a set of Input (e.g. A B C D),

• r-length tuples of input elements

• including repeated elements (A A)

• where order of the tuples is irrelevant (either A B or B A, not both).

@combinations_with_replacement can be useful, for example, in bioinformatics for finding evolutionary
relationships between genetic elements such as proteins and genes. Self-self comparisons can be used a
baseline for scaling similarity scores.

>>> from itertools import combinations_with_replacement
>>> # combinations_with_replacement('ABCD', 2) --> AA AB AC AD BB BC BD CC CD DD
>>> ["".join(a) for a in combinations_with_replacement('ABCD', 2)]
['AA', 'AB', 'AC', 'AD', 'BB', 'BC', 'BD', 'CC', 'CD', 'DD']

This example calculates the @combinations_with_replacement of A,B,C,D files

1.19. Chapter 17: @combinations, @permutations and all versus all @product 67

ruffus Documentation, Release 2.6.3

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

@combinations_with_replacement
@combinations_with_replacement(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 2 at a time
2,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}.combinations_with_replacement",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2rd
])

def combinations_with_replacement_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - A
A - B
A - C
A - D
B - B
B - C
B - D
C - C
C - D
D - D

68 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.20 Chapter 18: Turning parts of the pipeline on and off at runtime
with @active_if

See also:

• Manual Table of Contents

• @active_if syntax in detail

1.20.1 Overview

It is sometimes useful to be able to switch on and off parts of a pipeline. For example, a pipeline might
have two difference code paths depending on the type of data it is being asked to analyse.

One surprisingly easy way to do this is to use a python if statement around particular task functions:

from ruffus import *

run_task1 = True

@originate(['a.foo', 'b.foo'])
def create_files(output_file):

open(output_file, "w")

if run_task1:
might not run
@transform(create_files, suffix(".foo"), ".bar")
def foobar(input_file, output_file):

open(output_file, "w")

@transform(foobar, suffix(".bar"), ".result")
def wrap_up(input_file, output_file):

open(output_file, "w")

pipeline_run()

This simple solution has a number of drawbacks:

1. The on/off decision is a one off event that happens when the script is loaded. Ideally, we would
like some flexibility, and postpone the decision until pipeline_run() is invoked.

2. When if is false, the entire task function becomes invisible, and if there are any downstream
tasks, as in the above example, Ruffus will complain loudly about missing dependencies.

1.20.2 @active_if controls the state of tasks

• Switches tasks on and off at run time depending on its parameters

• Evaluated each time pipeline_run, pipeline_printout or
pipeline_printout_graph is called.

• Dormant tasks behave as if they are up to date and have no output.

The Design and initial implementation were contributed by Jacob Biesinger

1.20. Chapter 18: Turning parts of the pipeline on and off at runtime with @active_if 69

ruffus Documentation, Release 2.6.3

The following example shows its flexibility and syntax:

from ruffus import *
run_if_true_1 = True
run_if_true_2 = False
run_if_true_3 = True

#
task1
#
@originate(['a.foo', 'b.foo'])
def create_files(outfile):

"""
create_files
"""
open(outfile, "w").write(outfile + "\n")

#
Only runs if all three run_if_true conditions are met
#
@active_if determines if task is active
@active_if(run_if_true_1, lambda: run_if_true_2)
@active_if(run_if_true_3)
@transform(create_files, suffix(".foo"), ".bar")
def this_task_might_be_inactive(infile, outfile):

open(outfile, "w").write("%s -> %s\n" % (infile, outfile))

@active_if switches off task because run_if_true_2 == False
pipeline_run(verbose = 3)

@active_if switches on task because all run_if_true conditions are met
run_if_true_2 = True
pipeline_run(verbose = 3)

The task starts off inactive:

>>> # @active_if switches off task "this_task_might_be_inactive" because run_if_true_2 == False
>>> pipeline_run(verbose = 3)

Task enters queue = create_files
create_files

Job = [None -> a.foo] Missing file [a.foo]
Job = [None -> b.foo] Missing file [b.foo]
Job = [None -> a.foo] completed
Job = [None -> b.foo] completed

Completed Task = create_files
Inactive Task = this_task_might_be_inactive

Now turn on the task:

>>> # @active_if switches on task "this_task_might_be_inactive" because all run_if_true conditions are met
>>> run_if_true_2 = True
>>> pipeline_run(verbose = 3)

Task enters queue = this_task_might_be_inactive

Job = [a.foo -> a.bar] Missing file [a.bar]
Job = [b.foo -> b.bar] Missing file [b.bar]

70 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Job = [a.foo -> a.bar] completed
Job = [b.foo -> b.bar] completed

Completed Task = this_task_might_be_inactive

1.21 Chapter 19: Signal the completion of each stage of our pipeline
with @posttask

See also:

• Manual Table of Contents

• @posttask syntax

1.21.1 Overview

It is often useful to signal the completion of each task by specifying a specific action to be taken or
function to be called. This can range from printing out some message, or touching some sentinel file,
to emailing the author. This is particular useful if the task is a recipe apply to an unspecified number
of parameters in parallel in different jobs. If the task is never run, or if it fails, needless-to-say no task
completion action will happen.

Ruffus uses the @posttask decorator for this purpose.

@posttask

We can signal the completion of each task by specifying one or more function(s) using @posttask

from ruffus import *

def task_finished():
print "hooray"

@posttask(task_finished)
@originate("a.1")
def create_if_necessary(output_file):

open(output_file, "w")

pipeline_run([create_if_necessary])

This is such a short function, we might as well write it in-line:

@posttask(lambda: sys.stdout.write("hooray\n"))
@originate("a.1")
def create_if_necessary(output_file):

open(output_file, "w")

Note: The function(s) provided to @posttask will be called if the pipeline passes through a task, even if none of its
jobs are run because they are up-to-date. This happens when a upstream task is out-of-date, and the execution passes
through this point in the pipeline. See the example in Appendix 2: How dependency is checked of this manual.

1.21. Chapter 19: Signal the completion of each stage of our pipeline with @posttask 71

http://en.wikipedia.org/wiki/Touch_(Unix)

ruffus Documentation, Release 2.6.3

touch_file

One way to note the completion of a task is to create some sort of “flag” file. Each stage in a traditional
make pipeline would contain a touch completed.flag.

This is such a useful idiom that Ruffus provides the shorthand touch_file:

from ruffus import *

@posttask(touch_file("task_completed.flag"))
@files(None, "a.1")
def create_if_necessary(input_file, output_file):

open(output_file, "w")

pipeline_run()

Adding several post task actions

You can, of course, add more than one different action to be taken on completion of the task, either by
stacking up as many @posttask decorators as necessary, or by including several functions in the same
@posttask:

from ruffus import *

@posttask(print_hooray, print_whoppee)
@posttask(print_hip_hip, touch_file("sentinel_flag"))
@originate("a.1")
def create_if_necessary(output_file):

open(output_file, "w")

pipeline_run()

1.22 Chapter 20: Manipulating task inputs via string substitution us-
ing inputs() and add_inputs()

See also:

• Manual Table of Contents

• inputs() syntax

• add_inputs() syntax

Note: Remember to look at the example code:

• Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and add_inputs()

1.22.1 Overview

The previous chapters have been described how Ruffus allows the Output names for each job to be gen-
erated from the Input names via string substitution. This is how Ruffus can automatically chain multiple
tasks in a pipeline together seamlessly.

72 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Sometimes it is useful to be able to modify the Input by string substitution as well. There are two
situations where this additional flexibility is needed:

1. You need to add additional prequisites or filenames to the Input of every single job

2. You need to add additional Input file names which are some variant of the existing ones.

Both will be much more obvious with some examples

1.22.2 Adding additional input prerequisites per job with add_inputs()

1. Example: compiling c++ code

Let us first compile some c++ ("*.cpp") files using plain @transform syntax:

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:

open(source_file, "w")

from ruffus import *

@transform(source_files, suffix(".cpp"), ".o")
def compile(input_filename, output_file):

open(output_file, "w")

pipeline_run()

2. Example: Adding a common header file with add_inputs()

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:

open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

make header files
@transform(source_files, suffix(".cpp"), ".h")
def create_matching_headers(input_file, output_file):

open(output_file, "w")

@transform(source_files, suffix(".cpp"),
add header to the input of every job

add_inputs("universal.h",
add result of task create_matching_headers to the input of every job
create_matching_headers),

".o")
def compile(input_filename, output_file):

open(output_file, "w")

pipeline_run()

>>> pipeline_run()

1.22. Chapter 20: Manipulating task inputs via string substitution using inputs() and add_inputs()73

ruffus Documentation, Release 2.6.3

Job = [hasty.cpp -> hasty.h] completed
Job = [messy.cpp -> messy.h] completed
Job = [tasty.cpp -> tasty.h] completed

Completed Task = create_matching_headers
Job = [[hasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> hasty.o] completed
Job = [[messy.cpp, universal.h, hasty.h, messy.h, tasty.h] -> messy.o] completed
Job = [[tasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> tasty.o] completed

Completed Task = compile

3. Example: Additional Input can be tasks

We can also add a task name to add_inputs(). This chains the Output, i.e. run time results, of any previous
task as an additional Input to every single job in the task.

make header files
@transform(source_files, suffix(".cpp"), ".h")
def create_matching_headers(input_file, output_file):

open(output_file, "w")

@transform(source_files, suffix(".cpp"),
add header to the input of every job

add_inputs("universal.h",
add result of task create_matching_headers to the input of every job

create_matching_headers),
".o")

def compile(input_filenames, output_file):
open(output_file, "w")

pipeline_run()

>>> pipeline_run()
Job = [[hasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> hasty.o] completed
Job = [[messy.cpp, universal.h, hasty.h, messy.h, tasty.h] -> messy.o] completed
Job = [[tasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> tasty.o] completed

Completed Task = compile

4. Example: Add corresponding files using add_inputs() with formatter or regex

The previous example created headers corresponding to our source files and added them as the Input to
the compilation. That is generally not what you want. Instead, what is generally need is a way to

1. Look up the exact corresponding header for the specific job, and not add all possible files to all jobs
in a task. When compiling hasty.cpp, we just need to add hasty.h (and universal.h).

2. Add a pre-existing file name (hasty.h already exists. Don’t create it via another task.)

This is a surprisingly common requirement: In bioinformatics sometimes DNA or RNA sequence files
come singly in *.fastq and sometimes in matching pairs: *1.fastq, *2.fastq etc. In the latter
case, we often need to make sure that both sequence files are being processed in tandem. One way is to
take one file name (*1.fastq) and look up the other.

add_inputs() uses standard Ruffus string substitution via formatter and regex to lookup (gener-
ate) Input file names. (As a rule suffix only substitutes Output file names.)

@transform(source_files,
formatter(".cpp$"),

corresponding header for each source file

74 Chapter 1. Start Here:

http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/DNA_sequencing_theory#Pairwise_end-sequencing

ruffus Documentation, Release 2.6.3

add_inputs("{basename[0]}.h",
add header to the input of every job
"universal.h"),

"{basename[0]}.o")
def compile(input_filenames, output_file):

open(output_file, "w")

This script gives the following output

>>> pipeline_run()
Job = [[hasty.cpp, hasty.h, universal.h] -> hasty.o] completed
Job = [[messy.cpp, messy.h, universal.h] -> messy.o] completed
Job = [[tasty.cpp, tasty.h, universal.h] -> tasty.o] completed

Completed Task = compile

1.22.3 Replacing all input parameters with inputs()

The previous examples all added to the set of Input file names. Sometimes it is necessary to replace all
the Input parameters altogether.

5. Example: Running matching python scripts using inputs()

Here is a contrived example: we wish to find all cython/python files which have been compiled into
corresponding c++ source files. Instead of compiling the c++, we shall invoke the corresponding python
scripts.

Given three c++ files and their corresponding python scripts:

@transform(source_files,
formatter(".cpp$"),

corresponding python file for each source file
inputs("{basename[0]}.py"),

"{basename[0]}.results")
def run_corresponding_python(input_filenames, output_file):

open(output_file, "w")

The Ruffus code will call each python script corresponding to their c++ counterpart:

>>> pipeline_run()
Job = [hasty.py -> hasty.results] completed
Job = [messy.py -> messy.results] completed
Job = [tasty.py -> tasty.results] completed

Completed Task = run_corresponding_python

1.23 Chapter 21: Esoteric: Generating parameters on the fly with
@files

See also:

• Manual Table of Contents

• @files on-the-fly syntax in detail

1.23. Chapter 21: Esoteric: Generating parameters on the fly with @files 75

ruffus Documentation, Release 2.6.3

Note: Remember to look at the example code:

• Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files

1.23.1 Overview

The different Ruffus decorators connect up different tasks and generate Output (file names) from your
Input in all sorts of different ways.

However, sometimes, none of them quite do exactly what you need. And it becomes necessary to generate
your own Input and Output parameters on the fly.

Although this additional flexibility comes at the cost of a lot of extra inconvenient code, you can continue
to leverage the rest of Ruffus functionality such as checking whether files are up to date or not.

1.23.2 @files syntax

To generate parameters on the fly, use the @files with a generator function which yields one list / tuple of
parameters per job.

For example:

from ruffus import *

generator function
def generate_parameters_on_the_fly():

"""
returns one list of parameters per job
"""
parameters = [

['A.input', 'A.output', (1, 2)], # 1st job
['B.input', 'B.output', (3, 4)], # 2nd job
['C.input', 'C.output', (5, 6)], # 3rd job

]
for job_parameters in parameters:

yield job_parameters

tell ruffus that parameters should be generated on the fly
@files(generate_parameters_on_the_fly)
def pipeline_task(input, output, extra):

open(output, "w").write(open(input).read())
sys.stderr.write("%d + %d => %d\n" % (extra[0] , extra[1], extra[0] + extra[1]))

pipeline_run()

Produces:

Task = parallel_task 1 + 2 = 3 Job = [”A”, 1, 2] completed 3 + 4 = 7 Job = [”B”, 3, 4]
completed 5 + 6 = 11 Job = [”C”, 5, 6] completed

Note: Be aware that the parameter generating function may be invoked more than once: * The first time
to check if this part of the pipeline is up-to-date. * The second time when the pipeline task function is run.

76 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

The resulting custom inputs, outputs parameters per job are treated normally for the purposes of checking
to see if jobs are up-to-date and need to be re-run.

1.23.3 A Cartesian Product, all vs all example

The accompanying example provides a more realistic reason why you would want to generate parameters
on the fly. It is a fun piece of code, which generates N x M combinations from two sets of files as the
inputs of a pipeline stage.

The inputs / outputs filenames are generated as a pair of nested for-loops to produce the N (outside loop)
x M (inside loop) combinations, with the appropriate parameters for each job yielded per iteration of
the inner loop. The gist of this is:

#___
#
Generator function
#
N x M jobs
#___
def generate_simulation_params ():

"""
Custom function to generate
file names for gene/gwas simulation study
"""
for sim_file in get_simulation_files():

for (gene, gwas) in get_gene_gwas_file_pairs():
result_file = "%s.%s.results" % (gene, sim_file)
yield (gene, gwas, sim_file), result_file

@files(generate_simulation_params)
def gwas_simulation(input_files, output_file):

"..."

If get_gene_gwas_file_pairs() produces:

['a.sim', 'b.sim', 'c.sim']

and get_gene_gwas_file_pairs() produces:

[('1.gene', '1.gwas'), ('2.gene', '2.gwas')]

then we would end up with 3 x 2 = 6 jobs and the following equivalent function calls:

gwas_simulation(('1.gene', '1.gwas', 'a.sim'), "1.gene.a.sim.results")
gwas_simulation(('2.gene', '2.gwas', 'a.sim'), "2.gene.a.sim.results")
gwas_simulation(('1.gene', '1.gwas', 'b.sim'), "1.gene.b.sim.results")
gwas_simulation(('2.gene', '2.gwas', 'b.sim'), "2.gene.b.sim.results")
gwas_simulation(('1.gene', '1.gwas', 'c.sim'), "1.gene.c.sim.results")
gwas_simulation(('2.gene', '2.gwas', 'c.sim'), "2.gene.c.sim.results")

The accompanying code looks slightly more complicated because of some extra bookkeeping.

You can compare this approach with the alternative of using @product:

1.23. Chapter 21: Esoteric: Generating parameters on the fly with @files 77

ruffus Documentation, Release 2.6.3

#___
#
N x M jobs
#___
@product(os.path.join(simulation_data_dir, "*.simulation"),

formatter(),

os.path.join(gene_data_dir, "*.gene"),
formatter(),

add gwas as an input: looks like *.gene but with a differnt extension
add_inputs("{path[1][0]/{basename[1][0]}.gwas")

"{basename[0][0]}.{basename[1][0]}.results") # output file
def gwas_simulation(input_files, output_file):

"..."

1.24 Chapter 22: Esoteric: Running jobs in parallel without files us-
ing @parallel

See also:

• Manual Table of Contents

• @parallel syntax in detail

1.24.1 @parallel

@parallel supplies parameters for multiple jobs exactly like @files except that:

1. The first two parameters are not treated like inputs and ouputs parameters, and strings are not as-
sumed to be file names

2. Thus no checking of whether each job is up-to-date is made using inputs and outputs files

3. No expansions of glob patterns or output from previous tasks is carried out.

This syntax is most useful when a pipeline stage does not involve creating or consuming any files, and
you wish to forego the conveniences of @files, @transform etc.

The following code performs some arithmetic in parallel:

import sys
from ruffus import *
parameters = [

['A', 1, 2], # 1st job
['B', 3, 4], # 2nd job
['C', 5, 6], # 3rd job

]
@parallel(parameters)
def parallel_task(name, param1, param2):

sys.stderr.write(" Parallel task %s: " % name)
sys.stderr.write("%d + %d = %d\n" % (param1, param2, param1 + param2))

pipeline_run([parallel_task])

78 Chapter 1. Start Here:

http://docs.python.org/library/glob.html

ruffus Documentation, Release 2.6.3

produces the following:

Task = parallel_task
Parallel task A: 1 + 2 = 3
Job = ["A", 1, 2] completed
Parallel task B: 3 + 4 = 7
Job = ["B", 3, 4] completed
Parallel task C: 5 + 6 = 11
Job = ["C", 5, 6] completed

1.25 Chapter 23: Esoteric: Writing custom functions to decide which
jobs are up to date with @check_if_uptodate

See also:

• Manual Table of Contents

• @check_if_uptodate syntax in detail

1.25.1 @check_if_uptodate : Manual dependency checking

tasks specified with most decorators such as

• @split

• @transform

• @merge

• @collate

• @collate

have automatic dependency checking based on file modification times.

Sometimes, you might want to decide have more control over whether to run jobs, especially if a task
does not rely on or produce files (i.e. with @parallel)

You can write your own custom function to decide whether to run a job. This takes as many parame-
ters as your task function, and needs to return a tuple for whether an update is required, and why (i.e.
tuple(bool, str))

This simple example which creates the file "a.1" if it does not exist:

from ruffus import *
@originate("a.1")
def create_if_necessary(output_file):

open(output_file, "w")

pipeline_run([])

could be rewritten more laboriously as:

from ruffus import *
import os
def check_file_exists(input_file, output_file):

if os.path.exists(output_file):
return False, "File already exists"

return True, "%s is missing" % output_file

1.25. Chapter 23: Esoteric: Writing custom functions to decide which jobs are up to date with
@check_if_uptodate

79

ruffus Documentation, Release 2.6.3

@parallel([[None, "a.1"]])
@check_if_uptodate(check_file_exists)
def create_if_necessary(input_file, output_file):

open(output_file, "w")

pipeline_run([create_if_necessary])

Both produce the same output:

Task = create_if_necessary
Job = [null, "a.1"] completed

Note: The function specified by @check_if_uptodate can be called more than once for each job.

See the description here of how Ruffus decides which tasks to run.

1.26 Appendix 1: Flow Chart Colours with
pipeline_printout_graph(...)

See also:

• Manual Table of Contents

• pipeline_printout_graph(...)

• Download code

• Code for experimenting with colours

1.26.1 Flowchart colours

The appearance of Ruffus flowcharts produced by pipeline_printout_graph can be extensively customised.

This is mainly controlled by the user_colour_scheme (note UK spelling of “colour”) parameter

Example:

Use colour scheme index = 1

pipeline_printout_graph ("flowchart.svg", "svg", [final_task],
user_colour_scheme = {

"colour_scheme_index" :1,
"Pipeline" :{"fontcolor" : '"#FF3232"' },
"Key" :{"fontcolor" : "Red",

"fillcolor" : '"#F6F4F4"' },
"Task to run" :{"linecolor" : '"#0044A0"' },
"Final target" :{"fillcolor" : '"#EFA03B"',

"fontcolor" : "black",
"dashed" : 0 }

})

There are 8 colour schemes by setting "colour_scheme_index":

pipeline_printout_graph ("flowchart.svg", "svg", [final_task],
user_colour_scheme = {"colour_scheme_index" :6})

80 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

These colours were chosen after much fierce arguments between the authors and friends, and much inspiration from
http://kuler.adobe.com/#create/fromacolor. Please feel free to submit any additional sets of colours for our considera-
tion.

(Click here for image in svg.)

1.27 Appendix 2: How dependency is checked

See also:

• Manual Table of Contents

1.27.1 Overview

How does Ruffus decide how to run your pipeline?

• In which order should pipelined functions be called?

• Which parts of the pipeline are up-to-date and do not need to be rerun?

Running all out-of-date tasks and dependents

By default, Ruffus will

1.27. Appendix 2: How dependency is checked 81

http://kuler.adobe.com/#create/fromacolor

ruffus Documentation, Release 2.6.3

• build a flow chart (dependency tree) of pipelined tasks (functions)

• start from the most ancestral tasks with the fewest dependencies (task1 and task4 in the flowchart
above).

• walk up the tree to find the first incomplete / out-of-date tasks (i.e. task3 and task5.

• start running from there

All down-stream (dependent) tasks will be re-run anyway, so we don’t have to test whether they are
up-to-date or not.

Note: This means that Ruffus may ask any task if their jobs are out of date more than once:

• once when deciding which parts of the pipeline have to be run

• once just before executing the task.

Ruffus tries to be clever / efficient, and does the minimal amount of querying.

Forced Reruns

Even if a pipeline stage appears to be up to date, you can always force the pipeline to include from one or
more task functions.

This is particularly useful, for example, if the pipeline data hasn’t changed but the analysis or computional
code has.

pipeline_run(forcedtorun_tasks = [up_to_date_task1])

will run all tasks from up_to_date_task1 to final_task

Both the “target” and the “forced” lists can include as many tasks as you wish. All dependencies are still
carried out and out-of-date jobs rerun.

Esoteric option: Minimal Reruns

In the above example, if we were to delete the results of up_to_date_task1, Ruffus would rerun
up_to_date_task1, up_to_date_task2 and task3.

However, you might argue that so long as up_to_date_task2 is up-to-date, and it is the only neces-
sary prerequisite for task3, we should not be concerned about up_to_date_task1.

This is enabled with:

pipeline_run([task6], gnu_make_maximal_rebuild_mode = False)

This option walks down the dependency tree and proceeds no further when it encounters an up-to-date
task (up_to_date_task2) whatever the state of what lies beyond it.

This rather dangerous option is useful if you don’t want to keep all the intermediate files/results from
upstream tasks. The pipeline will only not involve any incomplete tasks which precede an up-to-date
result.

This is seldom what you intend, and you should always check that the appropriate stages of the pipeline
are executed in the flowchart output.

82 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.28 Appendix 3: Exceptions thrown inside pipelines

1.28.1 Overview

The goal for Ruffus is that exceptions should just work out-of-the-box without any fuss. This is especially
important for exceptions that come from your code which may be raised in a different process. Often mul-
tiple parallel operations (jobs or tasks) fail at the same time. Ruffus will forward each of these exceptions
with the tracebacks so you can jump straight to the offending line.

This example shows separate exceptions from two jobs running in parallel:

from ruffus import *

@originate(["a.start", "b.start", "c.start", "d.start", "e.start"])
def throw_exceptions_here(output_file):

raise Exception("OOPS")

pipeline_run(multiprocess = 2)

>>> pipeline_run(multiprocess = 2)

ruffus.ruffus_exceptions.RethrownJobError:

Original exceptions:

Exception #1
'exceptions.Exception(OOPS)' raised in ...
Task = def throw_exceptions_here(...):
Job = [None -> b.start]

Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 685, in run_pooled_job_without_exceptions
return_value = job_wrapper(param, user_defined_work_func, register_cleanup, touch_files_only)

File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 549, in job_wrapper_output_files
job_wrapper_io_files(param, user_defined_work_func, register_cleanup, touch_files_only, output_files_only = True)

File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 504, in job_wrapper_io_files
ret_val = user_defined_work_func(*(param[1:]))

File "<stdin>", line 3, in throw_exceptions_here
Exception: OOPS

Exception #2
'exceptions.Exception(OOPS)' raised in ...
Task = def throw_exceptions_here(...):
Job = [None -> a.start]

Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 685, in run_pooled_job_without_exceptions
return_value = job_wrapper(param, user_defined_work_func, register_cleanup, touch_files_only)

File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 549, in job_wrapper_output_files
job_wrapper_io_files(param, user_defined_work_func, register_cleanup, touch_files_only, output_files_only = True)

File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 504, in job_wrapper_io_files
ret_val = user_defined_work_func(*(param[1:]))

File "<stdin>", line 3, in throw_exceptions_here
Exception: OOPS

.. image:: ../../images/manual_exceptions.png

1.28. Appendix 3: Exceptions thrown inside pipelines 83

ruffus Documentation, Release 2.6.3

1.28.2 Pipelines running in parallel accumulate Exceptions

As show above, by default Ruffus accumulates NN exceptions before interrupting the pipeline prematurely
where NN is the specified parallelism for pipeline_run(multiprocess = NN)

This seems a fair tradeoff between being able to gather detailed error information for running jobs, and
not wasting too much time for a task that is going to fail anyway.

1.28.3 Terminate pipeline immediately upon Exceptions

Set pipeline_run(exceptions_terminate_immediately = True)

To have all exceptions interrupt the pipeline immediately, invoke:

pipeline_run(exceptions_terminate_immediately = True)

For example, with this change, only a single exception will be thrown before the pipeline is interrupted:

from ruffus import *

@originate(["a.start", "b.start", "c.start", "d.start", "e.start"])
def throw_exceptions_here(output_file):

raise Exception("OOPS")

pipeline_run(multiprocess = 2, exceptions_terminate_immediately = True)

>>> pipeline_run(multiprocess = 2)

ruffus.ruffus_exceptions.RethrownJobError:

Original exception:

Exception #1
'exceptions.Exception(OOPS)' raised in ...
Task = def throw_exceptions_here(...):
Job = [None -> a.start]

Traceback (most recent call last):
[Tedious traceback snipped out!!!....]

Exception: OOPS

raise Ruffus.JobSignalledBreak

The same can be accomplished on a finer scale by throwing the Ruffus.JobSignalledBreak Ex-
ception. Unlike other exceptions, this causes an immediate halt in pipeline execution. If there are other
exceptions in play at that point, they will be rethrown in the main process but no new exceptions will be
added.

from ruffus import *

@originate(["a.start", "b.start", "c.start", "d.start", "e.start"])
def throw_exceptions_here(output_file):

84 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

raise JobSignalledBreak("OOPS")

pipeline_run(multiprocess = 2)

1.28.4 Display exceptions as they occur

In the following example, the jobs throw exceptions at two second staggered intervals into the job. With
log_exceptions = True, the exceptions are displayed as they occur even though the pipeline con-
tinues running.

logger.error(...) will be invoked with the string representation of the each exception, and associated stack
trace.

The default logger prints to sys.stderr, but as usual can be changed to any class from the logging module
or compatible object via pipeline_run(logger = XXX)

from ruffus import *
import time, os

@originate(["1.start", "2.start", "3.start", "4.start", "5.start"])
def throw_exceptions_here(output_file):

delay = int(os.path.splitext(output_file)[0])
time.sleep(delay * 2)
raise JobSignalledBreak("OOPS")

pipeline_run(log_exceptions = True, multiprocess = 5)

1.29 Appendix 4: Names exported from Ruffus

See also:

• Manual Table of Contents

1.29.1 Ruffus Names

This is a list of all the names Ruffus makes available:

1.29. Appendix 4: Names exported from Ruffus 85

ruffus Documentation, Release 2.6.3

Category Manual
Pipeline functions

pipeline_printout() (Manual)
pipeline_printout() (Manual)
pipeline_printout() (Manual)

Decorators

@active_if (Manual)
@check_if_uptodate (Manual)
@collate (Manual)
@files (Manual)
@follows (Manual)
@jobs_limit (Manual)
@merge (Manual)
@mkdir (Manual)
@originate (Manual)
@parallel (Manual)
@posttask (Manual)
@split (Manual)
@subdivide (Manual)
@transform (Manual)
@files_re (Manual)

Loggers

stderr_logger
black_hole_logger

Parameter disambiguating Indicators

suffix (Manual)
regex (Manual)
formatter (Manual)
inputs (Manual)
inputs (Manual)
touch_file (Manual)
combine
mkdir (Manual)
output_from (Manual)

Decorators in ruffus.combinatorics

@combinations (Manual)
@combinations_with_replacement (Manual)
@permutations (Manual)
@product (Manual)

Decorators in ruffus.cmdline

get_argparse
setup_logging
run
MESSAGE86 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.30 Appendix 5: @files: Deprecated syntax

Warning:
• This is deprecated syntax

which is no longer supported and
should NOT be used in new code.

See also:

• Manual Table of Contents

• decorators

• @files syntax in detail

1.30.1 Overview

The python functions which do the actual work of each stage or task of a Ruffus pipeline are written by
you.
The role of Ruffus is to make sure these functions are called in the right order, with the right parameters,
running in parallel using multiprocessing if desired.

The easiest way to specify parameters to Ruffus task functions is to use the @files decorator.

1.30.2 @files

Running this code:

from ruffus import *

@files('a.1', ['a.2', 'b.2'], 'A file')
def single_job_io_task(infile, outfiles, text):

for o in outfiles: open(o, "w")

prepare input file
open('a.1', "w")

pipeline_run()

Is equivalent to calling:

single_job_io_task('a.1', ['a.2', 'b.2'], 'A file')

And produces:

>>> pipeline_run()
Job = [a.1 -> [a.2, b.2], A file] completed

Completed Task = single_job_io_task

Ruffus will automatically check if your task is up to date. The second time pipeline_run() is called, nothing
will happen. But if you update a.1, the task will rerun:

1.30. Appendix 5: @files: Deprecated syntax 87

ruffus Documentation, Release 2.6.3

>>> open('a.1', "w")
>>> pipeline_run()

Job = [a.1 -> [a.2, b.2], A file] completed
Completed Task = single_job_io_task

See chapter 2 for a more in-depth discussion of how Ruffus decides which parts of the pipeline are com-
plete and up-to-date.

1.30.3 Running the same code on different parameters in parallel

Your pipeline may require the same function to be called multiple times on independent parameters. In
which case, you can supply all the parameters to @files, each will be sent to separate jobs that may run
in parallel if necessary. Ruffus will check if each separate job is up-to-date using the inputs and outputs
(first two) parameters (See the Up-to-date jobs are not re-run unnecessarily).

For example, if a sequence (e.g. a list or tuple) of 5 parameters are passed to @files, that indicates there
will also be 5 separate jobs:

from ruffus import *
parameters = [

['job1.file'], # 1st job
['job2.file', 4], # 2st job
['job3.file', [3, 2]], # 3st job
[67, [13, 'job4.file']], # 4st job
['job5.file'], # 5st job

]
@files(parameters)
def task_file(*params):

""

Ruffus creates as many jobs as there are elements in parameters.
In turn, each of these elements consist of series of parameters which will be passed to each separate job.

Thus the above code is equivalent to calling:

task_file('job1.file')
task_file('job2.file', 4)
task_file('job3.file', [3, 2])
task_file(67, [13, 'job4.file'])
task_file('job5.file')

What task_file() does with these parameters is up to you!

The only constraint on the parameters is that Ruffus will treat any first parameter of each job as the inputs
and any second as the output. Any strings in the inputs or output parameters (including those nested in
sequences) will be treated as file names.

Thus, to pick the parameters out of one of the above jobs:

task_file(67, [13, 'job4.file'])

inputs == 67

outputs == [13, ’job4.file’]

88 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

The solitary output filename is job4.file

Checking if jobs are up to date

Usually we do not want to run all the stages in a pipeline but only where the input data has changed or is
no longer up to date.
One easy way to do this is to check the modification times for files produced at each stage of the pipeline.

Let us first create our starting files a.1 and b.1
We can then run the following pipeline function to create

• a.2 from a.1 and

• b.2 from b.1

create starting files
open("a.1", "w")
open("b.1", "w")

from ruffus import *
parameters = [

['a.1', 'a.2', 'A file'], # 1st job
['b.1', 'b.2', 'B file'], # 2nd job

]

@files(parameters)
def parallel_io_task(infile, outfile, text):

copy infile contents to outfile
infile_text = open(infile).read()
f = open(outfile, "w").write(infile_text + "\n" + text)

pipeline_run()

This produces the following output:

>>> pipeline_run()
Job = [a.1 -> a.2, A file] completed
Job = [b.1 -> b.2, B file] completed

Completed Task = parallel_io_task

If you called pipeline_run() again, nothing would happen because the files are up to date:
a.2 is more recent than a.1 and
b.2 is more recent than b.1

However, if you subsequently modified a.1 again:

open("a.1", "w")
pipeline_run(verbose = 1)

1.30. Appendix 5: @files: Deprecated syntax 89

ruffus Documentation, Release 2.6.3

you would see the following:

>>> pipeline_run([parallel_io_task])
Task = parallel_io_task

Job = ["a.1" -> "a.2", "A file"] completed
Job = ["b.1" -> "b.2", "B file"] unnecessary: already up to date

Completed Task = parallel_io_task

The 2nd job is up to date and will be skipped.

1.31 Appendix 6: @files_re: Deprecated syntax using regular expres-
sions

Warning:
• This is deprecated syntax

which is no longer supported and
should NOT be used in new code.

See also:

• Manual Table of Contents

• decorators

• @files_re syntax in detail

1.31.1 Overview

@files_re combines the functionality of @transform, @collate and @merge in one overloaded decorator.

This is the reason why its use is discouraged. @files_re syntax is far too overloaded and context-
dependent to support its myriad of different functions.

The following documentation is provided to help maintain historical Ruffus usage.

Transforming input and output filenames

For example, the following code takes files from the previous pipeline task, and makes new output param-
eters with the .sums suffix in place of the .chunks suffix:

@transform(step_4_split_numbers_into_chunks, suffix(".chunks"), ".sums")
def step_5_calculate_sum_of_squares (input_file_name, output_file_name):

#
calculate sums and sums of squares for all values in the input_file_name
writing to output_file_name
""

This can be written using @files_re equivalently:

@files_re(step_4_split_numbers_into_chunks, r".chunks", r".sums")
def step_5_calculate_sum_of_squares (input_file_name, output_file_name):
""

90 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Collating many inputs into a single output

Similarly, the following code collects inputs from the same species in the same directory:

@collate('*.animals', # inputs = all *.animal files
regex(r'mammals.([^.]+)'), # regular expression
r'\1/animals.in_my_zoo', # single output file per species
r'\1') # species name

def capture_mammals(infiles, outfile, species):
summarise all animals of this species
""

This can be written using @files_re equivalently using the combine indicator:

@files_re('*.animals', # inputs = all *.animal files
r'mammals.([^.]+)', # regular expression
combine(r'\1/animals.in_my_zoo'), # single output file per species
r'\1') # species name

def capture_mammals(infiles, outfile, species):
summarise all animals of this species
""

Generating input and output parameter using regular expresssions

The following code generates additional input prerequisite file names which match the original input files.

We want each job of our analyse() function to get corresponding pairs of xx.chunks and
xx.red_indian files when

*.chunks are generated by the task function split_up_problem() and
*.red_indian are generated by the task function make_red_indians():

@follows(make_red_indians)
@transform(split_up_problem, # starting set of *inputs*

regex(r"(.*).chunks"), # regular expression
inputs([r"\g<0>", # xx.chunks

r"\1.red_indian"]), # important.file
r"\1.results" # xx.results
)

def analyse(input_filenames, output_file_name):
"Do analysis here"

The equivalent code using @files_re looks very similar:

@follows(make_red_indians)
@files_re(split_up_problem, # starting set of *inputs*

r"(.*).chunks", # regular expression
[r"\g<0>", # xx.chunks
r"\1.red_indian"]), # important.file
r"\1.results") # xx.results

def analyse(input_filenames, output_file_name):
"Do analysis here"

Example code for:

1.31. Appendix 6: @files_re: Deprecated syntax using regular expressions 91

ruffus Documentation, Release 2.6.3

1.32 Chapter 1: Python Code for An introduction to basic Ruffus syn-
tax

See also:

• Manual Table of Contents

• @transform syntax in detail

• Back to Chapter 1: An introduction to basic Ruffus syntax

1.32.1 Your first Ruffus script

::

#
The starting data files would normally exist beforehand!
We create some empty files for this example
#
starting_files = ["a.fasta", "b.fasta", "c.fasta"]

for ff in starting_files:
open(ff, "w")

from ruffus import *

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files

suffix(".fasta"), # suffix = .fasta
".sam") # Output suffix = .sam

def map_dna_sequence(input_file,
output_file):

ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage

suffix(".sam"), # suffix = .sam
".bam") # Output suffix = .bam

def compress_sam_file(input_file,
output_file):

ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
@transform(compress_sam_file, # Input = previous stage

suffix(".bam"), # suffix = .bam
".statistics", # Output suffix = .statistics
"use_linear_model") # Extra statistics parameter

def summarise_bam_file(input_file,

92 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

output_file,
extra_stats_parameter):

"""
Sketch of real analysis function
"""
ii = open(input_file)
oo = open(output_file, "w")

pipeline_run()

1.32.2 Resulting Output

>>> pipeline_run()
Job = [a.fasta -> a.sam] completed
Job = [b.fasta -> b.sam] completed
Job = [c.fasta -> c.sam] completed

Completed Task = map_dna_sequence
Job = [a.sam -> a.bam] completed
Job = [b.sam -> b.bam] completed
Job = [c.sam -> c.bam] completed

Completed Task = compress_sam_file
Job = [a.bam -> a.statistics, use_linear_model] completed
Job = [b.bam -> b.statistics, use_linear_model] completed
Job = [c.bam -> c.statistics, use_linear_model] completed

Completed Task = summarise_bam_file

1.33 Chapter 1: Python Code for Transforming data in a pipeline with
@transform

See also:

• Manual Table of Contents

• @transform syntax in detail

• Back to Chapter 2: Transforming data in a pipeline with @transform

1.33.1 Your first Ruffus script

#
The starting data files would normally exist beforehand!
We create some empty files for this example
#
starting_files = [("a.1.fastq", "a.2.fastq"),

("b.1.fastq", "b.2.fastq"),
("c.1.fastq", "c.2.fastq")]

for ff_pair in starting_files:
open(ff_pair[0], "w")
open(ff_pair[1], "w")

1.33. Chapter 1: Python Code for Transforming data in a pipeline with @transform 93

ruffus Documentation, Release 2.6.3

from ruffus import *

#
STAGE 1 fasta->sam
#
@transform(starting_files, # Input = starting files

suffix(".1.fastq"), # suffix = .1.fastq
".sam") # Output suffix = .sam

def map_dna_sequence(input_files,
output_file):

remember there are two input files now
ii1 = open(input_files[0])
ii2 = open(input_files[1])
oo = open(output_file, "w")

#
STAGE 2 sam->bam
#
@transform(map_dna_sequence, # Input = previous stage

suffix(".sam"), # suffix = .sam
".bam") # Output suffix = .bam

def compress_sam_file(input_file,
output_file):

ii = open(input_file)
oo = open(output_file, "w")

#
STAGE 3 bam->statistics
#
@transform(compress_sam_file, # Input = previous stage

suffix(".bam"), # suffix = .bam
".statistics", # Output suffix = .statistics
"use_linear_model") # Extra statistics parameter

def summarise_bam_file(input_file,
output_file,
extra_stats_parameter):

"""
Sketch of real analysis function
"""
ii = open(input_file)
oo = open(output_file, "w")

pipeline_run()

1.33.2 Resulting Output

>>> pipeline_run()
Job = [[a.1.fastq, a.2.fastq] -> a.sam] completed
Job = [[b.1.fastq, b.2.fastq] -> b.sam] completed
Job = [[c.1.fastq, c.2.fastq] -> c.sam] completed

Completed Task = map_dna_sequence
Job = [a.sam -> a.bam] completed
Job = [b.sam -> b.bam] completed
Job = [c.sam -> c.bam] completed

Completed Task = compress_sam_file
Job = [a.bam -> a.statistics, use_linear_model] completed

94 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Job = [b.bam -> b.statistics, use_linear_model] completed
Job = [c.bam -> c.statistics, use_linear_model] completed

Completed Task = summarise_bam_file

1.34 Chapter 3: Python Code for More on @transform-ing data

See also:

• Manual Table of Contents

• @transform syntax in detail

• Back to Chapter 3: More on @transform-ing data and @originate

1.34.1 Producing several items / files per job

from ruffus import *

#---
Create pairs of input files
#
first_task_params = [

['job1.a.start', 'job1.b.start'],
['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start'],

]

for input_file_pairs in first_task_params:
for input_file in input_file_pairs:

open(input_file, "w")

#---
#
first task
#
@transform(first_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

#---
#
second task
#
@transform(first_task, suffix(".output.1"), ".output2")
def second_task(input_files, output_file):

with open(output_file, "w"): pass

1.34. Chapter 3: Python Code for More on @transform-ing data 95

ruffus Documentation, Release 2.6.3

#---
#
Run
#
pipeline_run([second_task])

Resulting Output

>>> pipeline_run([second_task])
Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = first_task
Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed

Completed Task = second_task

1.34.2 Defining tasks function out of order

from ruffus import *

#---
Create pairs of input files
#
first_task_params = [

['job1.a.start', 'job1.b.start'],
['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start'],

]

for input_file_pairs in first_task_params:
for input_file in input_file_pairs:

open(input_file, "w")

#---
#
second task defined first
#
task name string wrapped in output_from(...)
@transform(output_from("first_task"), suffix(".output.1"), ".output2")
def second_task(input_files, output_file):

with open(output_file, "w"): pass

#---
#
first task
#
@transform(first_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

96 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

"some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

#---
#
Run
#
pipeline_run([second_task])

Resulting Output

>>> pipeline_run([second_task])
Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = first_task
Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed

Completed Task = second_task

1.34.3 Multiple dependencies

from ruffus import *
import time
import random

#---
Create pairs of input files
#
first_task_params = [

['job1.a.start', 'job1.b.start'],
['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start'],

]
second_task_params = [

['job4.a.start', 'job4.b.start'],
['job5.a.start', 'job5.b.start'],
['job6.a.start', 'job6.b.start'],

]

for input_file_pairs in first_task_params + second_task_params:
for input_file in input_file_pairs:

open(input_file, "w")

#---
#
first task

1.34. Chapter 3: Python Code for More on @transform-ing data 97

ruffus Documentation, Release 2.6.3

#
@transform(first_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

time.sleep(random.random())

#---
#
second task
#
@transform(second_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def second_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

time.sleep(random.random())

#---
#
third task
#
depends on both first_task() and second_task()
@transform([first_task, second_task], suffix(".output.1"), ".output2")
def third_task(input_files, output_file):

with open(output_file, "w"): pass

#---
#
Run
#
pipeline_run([third_task], multiprocess = 6)

Resulting Output

>>> pipeline_run([third_task], multiprocess = 6)
Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = second_task
Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = first_task

98 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed
Job = [[job4.a.output.1, job4.a.output.extra.1] -> job4.a.output2] completed
Job = [[job5.a.output.1, job5.a.output.extra.1] -> job5.a.output2] completed
Job = [[job6.a.output.1, job6.a.output.extra.1] -> job6.a.output2] completed

Completed Task = third_task

1.34.4 Multiple dependencies after @follows

from ruffus import *
import time
import random

#---
Create pairs of input files
#
first_task_params = [

['job1.a.start', 'job1.b.start'],
['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start'],

]
second_task_params = [

['job4.a.start', 'job4.b.start'],
['job5.a.start', 'job5.b.start'],
['job6.a.start', 'job6.b.start'],

]

for input_file_pairs in first_task_params + second_task_params:
for input_file in input_file_pairs:

open(input_file, "w")

#---
#
first task
#
@transform(first_task_params, suffix(".start"),

[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def first_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

time.sleep(random.random())

#---
#
second task
#
@follows("first_task")

1.34. Chapter 3: Python Code for More on @transform-ing data 99

ruffus Documentation, Release 2.6.3

@transform(second_task_params, suffix(".start"),
[".output.1",
".output.extra.1"],

"some_extra.string.for_example", 14)
def second_task(input_files, output_file_pair,

extra_parameter_str, extra_parameter_num):
for output_file in output_file_pair:

with open(output_file, "w"):
pass

time.sleep(random.random())

#---
#
third task
#
depends on both first_task() and second_task()
@transform([first_task, second_task], suffix(".output.1"), ".output2")
def third_task(input_files, output_file):

with open(output_file, "w"): pass

#---
#
Run
#
pipeline_run([third_task], multiprocess = 6)

Resulting Output: first_task completes before second_task

>>> pipeline_run([third_task], multiprocess = 6)
Job = [[job2.a.start, job2.b.start] -> [job2.a.output.1, job2.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job3.a.start, job3.b.start] -> [job3.a.output.1, job3.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job1.a.start, job1.b.start] -> [job1.a.output.1, job1.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = first_task
Job = [[job4.a.start, job4.b.start] -> [job4.a.output.1, job4.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job6.a.start, job6.b.start] -> [job6.a.output.1, job6.a.output.extra.1], some_extra.string.for_example, 14] completed
Job = [[job5.a.start, job5.b.start] -> [job5.a.output.1, job5.a.output.extra.1], some_extra.string.for_example, 14] completed

Completed Task = second_task
Job = [[job1.a.output.1, job1.a.output.extra.1] -> job1.a.output2] completed
Job = [[job2.a.output.1, job2.a.output.extra.1] -> job2.a.output2] completed
Job = [[job3.a.output.1, job3.a.output.extra.1] -> job3.a.output2] completed
Job = [[job4.a.output.1, job4.a.output.extra.1] -> job4.a.output2] completed
Job = [[job5.a.output.1, job5.a.output.extra.1] -> job5.a.output2] completed
Job = [[job6.a.output.1, job6.a.output.extra.1] -> job6.a.output2] completed

1.35 Chapter 4: Python Code for Creating files with @originate

See also:

• Manual Table of Contents

• @transform syntax in detail

• Back to Chapter 4: @originate

100 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.35.1 Using @originate

from ruffus import *

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start']])

def create_initial_file_pairs(output_files):
create both files as necessary
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):

with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):

with open(output_file, "w"): pass

#
Run
#
pipeline_run([second_task])

1.35.2 Resulting Output

Job = [None -> [job1.a.start, job1.b.start]] completed
Job = [None -> [job2.a.start, job2.b.start]] completed
Job = [None -> [job3.a.start, job3.b.start]] completed

Completed Task = create_initial_file_pairs
Job = [[job1.a.start, job1.b.start] -> job1.a.output.1] completed
Job = [[job2.a.start, job2.b.start] -> job2.a.output.1] completed
Job = [[job3.a.start, job3.b.start] -> job3.a.output.1] completed

Completed Task = first_task
Job = [job1.a.output.1 -> job1.a.output.2] completed
Job = [job2.a.output.1 -> job2.a.output.2] completed
Job = [job3.a.output.1 -> job3.a.output.2] completed

Completed Task = second_task

1.36 Chapter 5: Python Code for Understanding how your pipeline
works with pipeline_printout(...)

See also:

• Manual Table of Contents

1.36. Chapter 5: Python Code for Understanding how your pipeline works with
pipeline_printout(...)

101

ruffus Documentation, Release 2.6.3

• pipeline_printout(...) syntax

• Back to Chapter 5: Understanding how your pipeline works

1.36.1 Display the initial state of the pipeline

from ruffus import *
import sys

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start']])

def create_initial_file_pairs(output_files):
create both files as necessary
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
first task
@transform(create_initial_file_pairs, suffix(".start"), ".output.1")
def first_task(input_files, output_file):

with open(output_file, "w"): pass

#---
second task
@transform(first_task, suffix(".output.1"), ".output.2")
def second_task(input_files, output_file):

with open(output_file, "w"): pass

pipeline_printout(sys.stdout, [second_task], verbose = 1)
pipeline_printout(sys.stdout, [second_task], verbose = 3)

1.36.2 Normal Output

>>> pipeline_printout(sys.stdout, [second_task], verbose = 1)

__
Tasks which will be run:

Task = create_initial_file_pairs
Task = first_task
Task = second_task

1.36.3 High Verbosity Output

>>> pipeline_printout(sys.stdout, [second_task], verbose = 4)

__
Tasks which will be run:

102 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Task = create_initial_file_pairs
Job = [None

-> job1.a.start
-> job1.b.start]

Job needs update: Missing files [job1.a.start, job1.b.start]
Job = [None

-> job2.a.start
-> job2.b.start]

Job needs update: Missing files [job2.a.start, job2.b.start]
Job = [None

-> job3.a.start
-> job3.b.start]

Job needs update: Missing files [job3.a.start, job3.b.start]

Task = first_task
Job = [[job1.a.start, job1.b.start]

-> job1.a.output.1]
Job needs update: Missing files [job1.a.start, job1.b.start, job1.a.output.1]

Job = [[job2.a.start, job2.b.start]
-> job2.a.output.1]

Job needs update: Missing files [job2.a.start, job2.b.start, job2.a.output.1]
Job = [[job3.a.start, job3.b.start]

-> job3.a.output.1]
Job needs update: Missing files [job3.a.start, job3.b.start, job3.a.output.1]

Task = second_task
Job = [job1.a.output.1

-> job1.a.output.2]
Job needs update: Missing files [job1.a.output.1, job1.a.output.2]

Job = [job2.a.output.1
-> job2.a.output.2]

Job needs update: Missing files [job2.a.output.1, job2.a.output.2]
Job = [job3.a.output.1

-> job3.a.output.2]
Job needs update: Missing files [job3.a.output.1, job3.a.output.2]

__

1.36.4 Display the partially up-to-date pipeline

Run the pipeline, modify job1.stage so that the second task is no longer up-to-date and printout the
pipeline stage again:

>>> pipeline_run([second_task], verbose=3)
Task enters queue = create_initial_file_pairs

Job = [None -> [job1.a.start, job1.b.start]]
Job = [None -> [job2.a.start, job2.b.start]]
Job = [None -> [job3.a.start, job3.b.start]]
Job = [None -> [job1.a.start, job1.b.start]] completed
Job = [None -> [job2.a.start, job2.b.start]] completed
Job = [None -> [job3.a.start, job3.b.start]] completed

Completed Task = create_initial_file_pairs
Task enters queue = first_task

Job = [[job1.a.start, job1.b.start] -> job1.a.output.1]
Job = [[job2.a.start, job2.b.start] -> job2.a.output.1]
Job = [[job3.a.start, job3.b.start] -> job3.a.output.1]
Job = [[job1.a.start, job1.b.start] -> job1.a.output.1] completed

1.36. Chapter 5: Python Code for Understanding how your pipeline works with
pipeline_printout(...)

103

ruffus Documentation, Release 2.6.3

Job = [[job2.a.start, job2.b.start] -> job2.a.output.1] completed
Job = [[job3.a.start, job3.b.start] -> job3.a.output.1] completed

Completed Task = first_task
Task enters queue = second_task

Job = [job1.a.output.1 -> job1.a.output.2]
Job = [job2.a.output.1 -> job2.a.output.2]
Job = [job3.a.output.1 -> job3.a.output.2]
Job = [job1.a.output.1 -> job1.a.output.2] completed
Job = [job2.a.output.1 -> job2.a.output.2] completed
Job = [job3.a.output.1 -> job3.a.output.2] completed

Completed Task = second_task

modify job1.stage1
>>> open("job1.a.output.1", "w").close()

At a verbosity of 6, even jobs which are up-to-date will be displayed:

>>> pipeline_printout(sys.stdout, [second_task], verbose = 6)

__
Tasks which are up-to-date:

Task = create_initial_file_pairs
Job = [None

-> job1.a.start
-> job1.b.start]

Job = [None
-> job2.a.start
-> job2.b.start]

Job = [None
-> job3.a.start
-> job3.b.start]

Task = first_task
Job = [[job1.a.start, job1.b.start]

-> job1.a.output.1]
Job = [[job2.a.start, job2.b.start]

-> job2.a.output.1]
Job = [[job3.a.start, job3.b.start]

-> job3.a.output.1]

__

__
Tasks which will be run:

Task = second_task
Job = [job1.a.output.1

-> job1.a.output.2]
Job needs update:
Input files:

* 22 Jul 2014 15:29:19.33: job1.a.output.1
Output files:

* 22 Jul 2014 15:29:07.53: job1.a.output.2

104 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Job = [job2.a.output.1
-> job2.a.output.2]

Job = [job3.a.output.1
-> job3.a.output.2]

__

We can now see that the there is only one job in “second_task” which needs to be re-run because
‘job1.stage1’ has been modified after ‘job1.stage2’

1.37 Chapter 7: Python Code for Displaying the pipeline visually with
pipeline_printout_graph(...)

See also:

• Manual Table of Contents

• pipeline_printout_graph(...) syntax

• Back to Chapter 7: Displaying the pipeline visually

1.37.1 Code

1 from ruffus import *
2 import sys
3

4 #---
5 # create initial files
6 #
7 @originate([['job1.a.start', 'job1.b.start'],
8 ['job2.a.start', 'job2.b.start'],
9 ['job3.a.start', 'job3.b.start']])

10 def create_initial_file_pairs(output_files):
11 # create both files as necessary
12 for output_file in output_files:
13 with open(output_file, "w") as oo: pass
14

15 #---
16 # first task
17 @transform(create_initial_file_pairs, suffix(".start"), ".output.1")
18 def first_task(input_files, output_file):
19 with open(output_file, "w"): pass
20

21

22 #---
23 # second task
24 @transform(first_task, suffix(".output.1"), ".output.2")
25 def second_task(input_files, output_file):
26 with open(output_file, "w"): pass
27

28 # Print graph before running pipeline
29

30 #---
31 #
32 # Show flow chart and tasks before running the pipeline

1.37. Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(...)105

ruffus Documentation, Release 2.6.3

33 #
34 print "Show flow chart and tasks before running the pipeline"
35 pipeline_printout_graph (open("simple_tutorial_stage5_before.png", "w"),
36 "png",
37 [second_task],
38 minimal_key_legend=True)
39

40 #---
41 #
42 # Run
43 #
44 pipeline_run([second_task])
45

46

47 # modify job1.stage1
48 open("job1.a.output.1", "w").close()
49

50

51 # Print graph after everything apart from ``job1.a.output.1`` is update
52

53 #---
54 #
55 # Show flow chart and tasks after running the pipeline
56 #
57 print "Show flow chart and tasks after running the pipeline"
58 pipeline_printout_graph (open("simple_tutorial_stage5_after.png", "w"),
59 "png",
60 [second_task],
61 no_key_legend=True)

1.37.2 Resulting Flowcharts

Before After

Legend

106 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.38 Chapter 8: Python Code for Specifying output file names with
formatter() and regex()

See also:

• Manual Table of Contents

• suffix() syntax

• formatter() syntax

• regex() syntax

• Back to Chapter 8: Specifying output file names

1.38.1 Example Code for suffix()

from ruffus import *

#---
create initial files
#
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.b.start']])

def create_initial_file_pairs(output_files):
create both files as necessary
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
#
suffix
#
@transform(create_initial_file_pairs, # name of previous task(s) (or list of files, or a glob)

suffix(".start"), # matching suffix of the "input file"
[".output.a.1", 45, ".output.b.1"]) # resulting suffix

def first_task(input_files, output_parameters):
print " input_parameters = ", input_files
print " output_parameters = ", output_parameters

#
Run
#
pipeline_run([first_task])

1.38.2 Example Code for formatter()

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.c.start']])

def create_initial_file_pairs(output_files):

1.38. Chapter 8: Python Code for Specifying output file names with formatter() and regex() 107

ruffus Documentation, Release 2.6.3

create both files as necessary
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
#
formatter
#

first task
@transform(create_initial_file_pairs, # Input

formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
".+/job[123].b.start"), # Match only "b" files

["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
"{path[1]}/jobs{JOBNUMBER[0]}.output.b.1", 45])

def first_task(input_files, output_parameters):
print "input_parameters = ", input_files
print "output_parameters = ", output_parameters

#
Run
#
pipeline_run(verbose=0)

1.38.3 Example Code for formatter() with replacements in extra arguments

from ruffus import *

create initial files
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.c.start']])

def create_initial_file_pairs(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
#
print job number as an extra argument
#

first task
@transform(create_initial_file_pairs, # Input

formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
".+/job[123].b.start"), # Match only "b" files

["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
"{path[1]}/jobs{JOBNUMBER[0]}.output.b.1"],

"{JOBNUMBER[0]}"

108 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

def first_task(input_files, output_parameters, job_number):
print job_number, ":", input_files

pipeline_run(verbose=0)

1.38.4 Example Code for formatter() in Zoos

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])

@originate(
List of animals and plants
["tiger/mammals.wild.animals",

"lion/mammals.wild.animals",
"lion/mammals.handreared.animals",
"dog/mammals.tame.animals",
"dog/mammals.wild.animals",
"crocodile/reptiles.wild.animals",
"rose/flowering.handreared.plants"])

def create_initial_files(output_file):
with open(output_file, "w") as oo: pass

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

pipeline_run(verbose=0)

Results in:

::

>>> pipeline_run(verbose=0)
Food for the wild crocodile = ./reptiles/wild.crocodile.food will be placed in ./reptiles
Food for the tame dog = ./mammals/tame.dog.food will be placed in ./mammals
Food for the wild dog = ./mammals/wild.dog.food will be placed in ./mammals
Food for the handreared lion = ./mammals/handreared.lion.food will be placed in ./mammals
Food for the wild lion = ./mammals/wild.lion.food will be placed in ./mammals
Food for the wild tiger = ./mammals/wild.tiger.food will be placed in ./mammals

1.38. Chapter 8: Python Code for Specifying output file names with formatter() and regex() 109

ruffus Documentation, Release 2.6.3

1.38.5 Example Code for regex() in zoos

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])

@originate(
List of animals and plants
["tiger/mammals.wild.animals",

"lion/mammals.wild.animals",
"lion/mammals.handreared.animals",
"dog/mammals.tame.animals",
"dog/mammals.wild.animals",
"crocodile/reptiles.wild.animals",
"rose/flowering.handreared.plants"])

def create_initial_files(output_file):
with open(output_file, "w") as oo: pass

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

r"\1/\g<clade>/\g<tame>.\2.food", # Replacement

r"\1/\g<clade>", # new_directory
r"\2", # animal_name
"\g<tame>") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "Food for the {tameness:11s} {animal_name:9s} = {output_file:90s} will be placed in {new_directory}".format(**locals())

pipeline_run(verbose=0)

Results in:

::

>>> pipeline_run(verbose=0)
Food for the wild crocodile = reptiles/wild.crocodile.food will be placed in reptiles
Food for the tame dog = mammals/tame.dog.food will be placed in mammals
Food for the wild dog = mammals/wild.dog.food will be placed in mammals
Food for the handreared lion = mammals/handreared.lion.food will be placed in mammals
Food for the wild lion = mammals/wild.lion.food will be placed in mammals
Food for the wild tiger = mammals/wild.tiger.food will be placed in mammals

1.39 Chapter 9: Python Code for Preparing directories for output with
@mkdir()

See also:

• Manual Table of Contents

110 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

• mkdir() syntax

• formatter() syntax

• regex() syntax

• Back to Chapter 9: Preparing directories for output with @mkdir()

1.39.1 Code for formatter() Zoo example

from ruffus import *

Make directories
@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])
@originate(

List of animals and plants
["tiger/mammals.wild.animals",

"lion/mammals.wild.animals",
"lion/mammals.handreared.animals",
"dog/mammals.tame.animals",
"dog/mammals.wild.animals",
"crocodile/reptiles.wild.animals",
"rose/flowering.handreared.plants"])

def create_initial_files(output_file):
with open(output_file, "w") as oo: pass

create directories for each clade
@mkdir(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}") # new_directory
Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

formatter(".+/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

"{subpath[0][1]}/{clade[0]}/{tame[0]}.{subdir[0][0]}.food", # Replacement

"{subpath[0][1]}/{clade[0]}", # new_directory
"{subdir[0][0]}", # animal_name
"{tame[0]}") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "%40s -> %90s" % (input_file, output_file)
this works now
open(output_file, "w")

pipeline_run(verbose=0)

1.39.2 Code for regex() Zoo example

from ruffus import *

Make directories

1.39. Chapter 9: Python Code for Preparing directories for output with @mkdir() 111

ruffus Documentation, Release 2.6.3

@mkdir(["tiger", "lion", "dog", "crocodile", "rose"])
@originate(

List of animals and plants
["tiger/mammals.wild.animals",

"lion/mammals.wild.animals",
"lion/mammals.handreared.animals",
"dog/mammals.tame.animals",
"dog/mammals.wild.animals",
"crocodile/reptiles.wild.animals",
"rose/flowering.handreared.plants"])

def create_initial_files(output_file):
with open(output_file, "w") as oo: pass

create directories for each clade
@mkdir(create_initial_files, # Input

regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!
r"\g<clade>") # new_directory

Put different animals in different directories depending on their clade
@transform(create_initial_files, # Input

regex(r"(.*?/?)(\w+)/(?P<clade>\w+).(?P<tame>\w+).animals"), # Only animals: ignore plants!

r"\1\g<clade>/\g<tame>.\2.food", # Replacement

r"\1\g<clade>", # new_directory
r"\2", # animal_name
"\g<tame>") # tameness

def feed(input_file, output_file, new_directory, animal_name, tameness):
print "%40s -> %90s" % (input_file, output_file)
this works now
open(output_file, "w")

pipeline_run(verbose=0)

1.40 Chapter 10: Python Code for Checkpointing: Interrupted
Pipelines and Exceptions

See also:

• Manual Table of Contents

• Back to |new_manual.checkpointing.chapter_num|: Interrupted Pipelines and Exceptions

1.40.1 Code for the “Interrupting tasks” example

from ruffus import *

from ruffus import *
import sys, time

create initial files

112 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

@originate(['job1.start'])
def create_initial_files(output_file):

with open(output_file, "w") as oo: pass

#---
#
long task to interrupt
#
@transform(create_initial_files, suffix(".start"), ".output")
def long_task(input_files, output_file):

with open(output_file, "w") as ff:
ff.write("Unfinished...")
sleep for 2 seconds here so you can interrupt me
sys.stderr.write("Job started. Press ^C to interrupt me now...\n")
time.sleep(2)
ff.write("\nFinished")
sys.stderr.write("Job completed.\n")

Run
pipeline_run([long_task])

1.41 Chapter 12: Python Code for Splitting up large tasks / files with
@split

See also:

• Manual Table of Contents

• @split syntax in detail

• Back to Chapter 12: Splitting up large tasks / files with @split

1.41.1 Splitting large jobs

from ruffus import *

NUMBER_OF_RANDOMS = 10000
CHUNK_SIZE = 1000

import random, os, glob

#---
#
Create random numbers
#
@originate("random_numbers.list")
def create_random_numbers(output_file_name):

f = open(output_file_name, "w")
for i in range(NUMBER_OF_RANDOMS):

f.write("%g\n" % (random.random() * 100.0))

#---

1.41. Chapter 12: Python Code for Splitting up large tasks / files with @split 113

ruffus Documentation, Release 2.6.3

#
split initial file
#
@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):

"""
splits random numbers file into xxx files of chunk_size each

"""
#
clean up any files from previous runs
#
#for ff in glob.glob("*.chunks"):
for ff in input_file_names:

os.unlink(ff)
#
#
create new file every chunk_size lines and
copy each line into current file
#
output_file = None
cnt_files = 0
for input_file_name in input_file_names:

for i, line in enumerate(open(input_file_name)):
if i % CHUNK_SIZE == 0:

cnt_files += 1
output_file = open("%d.chunks" % cnt_files, "w")

output_file.write(line)

#---
#
Calculate sum and sum of squares for each chunk file
#
@transform(split_problem, suffix(".chunks"), ".sums")
def sum_of_squares (input_file_name, output_file_name):

output = open(output_file_name, "w")
sum_squared, sum = [0.0, 0.0]
cnt_values = 0
for line in open(input_file_name):

cnt_values += 1
val = float(line.rstrip())
sum_squared += val * val
sum += val

output.write("%s\n%s\n%d\n" % (repr(sum_squared), repr(sum), cnt_values))

#---
#
Run
#
pipeline_run()

1.41.2 Resulting Output

>>> pipeline_run()
Job = [None -> random_numbers.list] completed

Completed Task = create_random_numbers
Job = [[random_numbers.list] -> *.chunks] completed

114 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Completed Task = split_problem
Job = [1.chunks -> 1.sums] completed
Job = [10.chunks -> 10.sums] completed
Job = [2.chunks -> 2.sums] completed
Job = [3.chunks -> 3.sums] completed
Job = [4.chunks -> 4.sums] completed
Job = [5.chunks -> 5.sums] completed
Job = [6.chunks -> 6.sums] completed
Job = [7.chunks -> 7.sums] completed
Job = [8.chunks -> 8.sums] completed
Job = [9.chunks -> 9.sums] completed

Completed Task = sum_of_squares

1.42 Chapter 13: Python Code for @merge multiple input into a single
result

See also:

• Manual Table of Contents

• @merge syntax in detail

• Back to Chapter 13: Splitting up large tasks / files with @merge

1.42.1 Splitting large jobs

from ruffus import *

NUMBER_OF_RANDOMS = 10000
CHUNK_SIZE = 1000

import random, os, glob

#---
#
Create random numbers
#
@originate("random_numbers.list")
def create_random_numbers(output_file_name):

f = open(output_file_name, "w")
for i in range(NUMBER_OF_RANDOMS):

f.write("%g\n" % (random.random() * 100.0))

#---
#
split initial file
#
@split(create_random_numbers, "*.chunks")
def split_problem (input_file_names, output_files):

"""
splits random numbers file into xxx files of chunk_size each

"""
#
clean up any files from previous runs

1.42. Chapter 13: Python Code for @merge multiple input into a single result 115

ruffus Documentation, Release 2.6.3

#
#for ff in glob.glob("*.chunks"):
for ff in input_file_names:

os.unlink(ff)
#
#
create new file every chunk_size lines and
copy each line into current file
#
output_file = None
cnt_files = 0
for input_file_name in input_file_names:

for i, line in enumerate(open(input_file_name)):
if i % CHUNK_SIZE == 0:

cnt_files += 1
output_file = open("%d.chunks" % cnt_files, "w")

output_file.write(line)

#---
#
Calculate sum and sum of squares for each chunk file
#
@transform(split_problem, suffix(".chunks"), ".sums")
def sum_of_squares (input_file_name, output_file_name):

output = open(output_file_name, "w")
sum_squared, sum = [0.0, 0.0]
cnt_values = 0
for line in open(input_file_name):

cnt_values += 1
val = float(line.rstrip())
sum_squared += val * val
sum += val

output.write("%s\n%s\n%d\n" % (repr(sum_squared), repr(sum), cnt_values))

#---
#
Calculate variance from sums
#
@merge(sum_of_squares, "variance.result")
def calculate_variance (input_file_names, output_file_name):

"""
Calculate variance naively
"""
#
initialise variables
#
all_sum_squared = 0.0
all_sum = 0.0
all_cnt_values = 0.0
#
added up all the sum_squared, and sum and cnt_values from all the chunks
#
for input_file_name in input_file_names:

sum_squared, sum, cnt_values = map(float, open(input_file_name).readlines())
all_sum_squared += sum_squared
all_sum += sum
all_cnt_values += cnt_values

all_mean = all_sum / all_cnt_values

116 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

variance = (all_sum_squared - all_sum * all_mean)/(all_cnt_values)
#
print output
#
open(output_file_name, "w").write("%s\n" % variance)

#---
#
Run
#
pipeline_run()

1.42.2 Resulting Output

>>> pipeline_run()
Job = [None -> random_numbers.list] completed

Completed Task = create_random_numbers
Job = [[random_numbers.list] -> *.chunks] completed

Completed Task = split_problem
Job = [1.chunks -> 1.sums] completed
Job = [10.chunks -> 10.sums] completed
Job = [2.chunks -> 2.sums] completed
Job = [3.chunks -> 3.sums] completed
Job = [4.chunks -> 4.sums] completed
Job = [5.chunks -> 5.sums] completed
Job = [6.chunks -> 6.sums] completed
Job = [7.chunks -> 7.sums] completed
Job = [8.chunks -> 8.sums] completed
Job = [9.chunks -> 9.sums] completed

Completed Task = sum_of_squares
Job = [[1.sums, 10.sums, 2.sums, 3.sums, 4.sums, 5.sums, 6.sums, 7.sums, 8.sums, 9.sums] -> variance.result] completed

Completed Task = calculate_variance

1.43 Chapter 14: Python Code for Multiprocessing, drmaa and Com-
putation Clusters

See also:

• Manual Table of Contents

• @jobs_limit syntax

• pipeline_run() syntax

• drmaa_wrapper.run_job() syntax

• Back to Chapter 14: Multiprocessing, drmaa and Computation Clusters

1.43.1 @jobs_limit

• First 2 tasks are constrained to a parallelism of 3 shared jobs at a time

• Final task is constrained to a parallelism of 5 jobs at a time

1.43. Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters 117

ruffus Documentation, Release 2.6.3

• The entire pipeline is constrained to a (theoretical) parallelism of 10 jobs at a time

from ruffus import *
import time

make list of 10 files
@split(None, "*stage1")
def make_files(input_files, output_files):

for i in range(10):
if i < 5:

open("%d.small_stage1" % i, "w")
else:

open("%d.big_stage1" % i, "w")

@jobs_limit(3, "ftp_download_limit")
@transform(make_files, suffix(".small_stage1"), ".stage2")
def stage1_small(input_file, output_file):

print "FTP downloading %s ->Start" % input_file
time.sleep(2)
open(output_file, "w")
print "FTP downloading %s ->Finished" % input_file

@jobs_limit(3, "ftp_download_limit")
@transform(make_files, suffix(".big_stage1"), ".stage2")
def stage1_big(input_file, output_file):

print "FTP downloading %s ->Start" % input_file
time.sleep(2)
open(output_file, "w")
print "FTP downloading %s ->Finished" % input_file

@jobs_limit(5)
@transform([stage1_small, stage1_big], suffix(".stage2"), ".stage3")
def stage2(input_file, output_file):

print "Processing stage2 %s ->Start" % input_file
time.sleep(2)
open(output_file, "w")
print "Processing stage2 %s ->Finished" % input_file

pipeline_run(multiprocess = 10, verbose = 0)

Giving:

>>> pipeline_run(multiprocess = 10, verbose = 0)

>>> # 3 jobs at a time, interleaved
FTP downloading 5.big_stage1 ->Start
FTP downloading 6.big_stage1 ->Start
FTP downloading 7.big_stage1 ->Start
FTP downloading 5.big_stage1 ->Finished
FTP downloading 8.big_stage1 ->Start
FTP downloading 6.big_stage1 ->Finished
FTP downloading 9.big_stage1 ->Start
FTP downloading 7.big_stage1 ->Finished
FTP downloading 0.small_stage1 ->Start
FTP downloading 8.big_stage1 ->Finished
FTP downloading 1.small_stage1 ->Start
FTP downloading 9.big_stage1 ->Finished
FTP downloading 2.small_stage1 ->Start
FTP downloading 0.small_stage1 ->Finished

118 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

FTP downloading 3.small_stage1 ->Start
FTP downloading 1.small_stage1 ->Finished
FTP downloading 4.small_stage1 ->Start
FTP downloading 2.small_stage1 ->Finished
FTP downloading 3.small_stage1 ->Finished
FTP downloading 4.small_stage1 ->Finished

>>> # 5 jobs at a time, interleaved
Processing stage2 0.stage2 ->Start
Processing stage2 1.stage2 ->Start
Processing stage2 2.stage2 ->Start
Processing stage2 3.stage2 ->Start
Processing stage2 4.stage2 ->Start
Processing stage2 0.stage2 ->Finished
Processing stage2 5.stage2 ->Start
Processing stage2 1.stage2 ->Finished
Processing stage2 6.stage2 ->Start
Processing stage2 2.stage2 ->Finished
Processing stage2 4.stage2 ->Finished
Processing stage2 7.stage2 ->Start
Processing stage2 8.stage2 ->Start
Processing stage2 3.stage2 ->Finished
Processing stage2 9.stage2 ->Start
Processing stage2 5.stage2 ->Finished
Processing stage2 7.stage2 ->Finished
Processing stage2 6.stage2 ->Finished
Processing stage2 8.stage2 ->Finished
Processing stage2 9.stage2 ->Finished

1.43.2 Using ruffus.drmaa_wrapper

#!/usr/bin/python
job_queue_name = "YOUR_QUEUE_NAME_GOES_HERE"
job_other_options = "-P YOUR_PROJECT_NAME_GOES_HERE"

from ruffus import *
from ruffus.drmaa_wrapper import run_job, error_drmaa_job

parser = cmdline.get_argparse(description='WHAT DOES THIS PIPELINE DO?')

options = parser.parse_args()

logger which can be passed to multiprocessing ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

#
start shared drmaa session for all jobs / tasks in pipeline
#
import drmaa
drmaa_session = drmaa.Session()
drmaa_session.initialize()

@originate(["1.chromosome", "X.chromosome"],
logger, logger_mutex)

def create_test_files(output_file):

1.43. Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters 119

ruffus Documentation, Release 2.6.3

try:
stdout_res, stderr_res = "",""
job_queue_name, job_other_options = get_queue_options()

#
ruffus.drmaa_wrapper.run_job
#
stdout_res, stderr_res = run_job(cmd_str = "touch " + output_file,

job_name = job_name,
logger = logger,
drmaa_session = drmaa_session,
run_locally = options.local_run,
job_queue_name = job_queue_name,
job_other_options = job_other_options)

relay all the stdout, stderr, drmaa output to diagnose failures
except error_drmaa_job as err:

raise Exception("\n".join(map(str,
"Failed to run:"
cmd,
err,
stdout_res,
stderr_res)))

if __name__ == '__main__':
cmdline.run (options, multithread = options.jobs)
cleanup drmaa
drmaa_session.exit()

1.44 Chapter 15: Python Code for Logging progress through a
pipeline

See also:

• Manual Table of Contents

• Back to Chapter 15: Logging progress through a pipeline

1.44.1 Rotating set of file logs

import logging
import logging.handlers

LOG_FILENAME = '/tmp/ruffus.log'

Set up a specific logger with our desired output level
logger = logging.getLogger('My_Ruffus_logger')
logger.setLevel(logging.DEBUG)

Rotate a set of 5 log files every 2kb
handler = logging.handlers.RotatingFileHandler(

LOG_FILENAME, maxBytes=2000, backupCount=5)

120 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Add the log message handler to the logger
logger.addHandler(handler)

Ruffus pipeline
from ruffus import *

Start with some initial data file of yours...
initial_file = "job1.input"
open(initial_file, "w")

@transform(initial_file,
suffix(".input"),
".output1"),

def first_task(input_file, output_file):
"Some detailed description"
pass

use our custom logging object
pipeline_run(logger=logger)
print open("/tmp/ruffus.log").read()

1.45 Chapter 16: Python Code for @subdivide tasks to run efficiently
and regroup with @collate

See also:

• Manual Table of Contents

• @jobs_limit syntax

• pipeline_run() syntax

• drmaa_wrapper.run_job() syntax

• Back to Chapter 16: :ref:‘@subdivide tasks to run efficiently and regroup with @collate

1.45.1 @subdivide and regroup with @collate example

from ruffus import *
import os, random, sys

Create files a random number of lines
@originate(["a.start",

"b.start",
"c.start"])

def create_test_files(output_file):
cnt_lines = random.randint(1,3) * 2
with open(output_file, "w") as oo:

for ii in range(cnt_lines):
oo.write("data item = %d\n" % ii)

print " %s has %d lines" % (output_file, cnt_lines)

#
subdivide the input files into NNN fragment files of 2 lines each

1.45. Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate121

ruffus Documentation, Release 2.6.3

#
@subdivide(create_test_files,

formatter(),
"{path[0]}/{basename[0]}.*.fragment",
"{path[0]}/{basename[0]}")

def subdivide_files(input_file, output_files, output_file_name_stem):
#
cleanup any previous results
#
for oo in output_files:

os.unlink(oo)
#
Output files contain two lines each
(new output files every even line)
#
cnt_output_files = 0
for ii, line in enumerate(open(input_file)):

if ii % 2 == 0:
cnt_output_files += 1
output_file_name = "%s.%d.fragment" % (output_file_name_stem, cnt_output_files)
output_file = open(output_file_name, "w")
print " Subdivide %s -> %s" % (input_file, output_file_name)

output_file.write(line)

#
Analyse each fragment independently
#
@transform(subdivide_files, suffix(".fragment"), ".analysed")
def analyse_fragments(input_file, output_file):

print " Analysing %s -> %s" % (input_file, output_file)
with open(output_file, "w") as oo:

for line in open(input_file):
oo.write("analysed " + line)

#
Group results using original names
#
@collate(analyse_fragments,

split file name into [abc].NUMBER.analysed
formatter("/(?P<NAME>[abc]+)\.\d+\.analysed$"),

"{path[0]}/{NAME[0]}.final_result")
def recombine_analyses(input_file_names, output_file):

with open(output_file, "w") as oo:
for input_file in input_file_names:

print " Recombine %s -> %s" % (input_file, output_file)
for line in open(input_file):

oo.write(line)

#pipeline_printout(sys.stdout, verbose = 3)

122 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

pipeline_run(verbose = 1)

Results in

>>> pipeline_run(verbose = 1)

a.start has 2 lines
Job = [None -> a.start] completed

b.start has 6 lines
Job = [None -> b.start] completed

c.start has 6 lines
Job = [None -> c.start] completed

Completed Task = create_test_files

Subdivide a.start -> /home/lg/temp/a.1.fragment
Job = [a.start -> a.*.fragment, a] completed

Subdivide b.start -> /home/lg/temp/b.1.fragment
Subdivide b.start -> /home/lg/temp/b.2.fragment
Subdivide b.start -> /home/lg/temp/b.3.fragment

Job = [b.start -> b.*.fragment, b] completed
Subdivide c.start -> /home/lg/temp/c.1.fragment
Subdivide c.start -> /home/lg/temp/c.2.fragment
Subdivide c.start -> /home/lg/temp/c.3.fragment

Job = [c.start -> c.*.fragment, c] completed
Completed Task = subdivide_files

Analysing /home/lg/temp/a.1.fragment -> /home/lg/temp/a.1.analysed
Job = [a.1.fragment -> a.1.analysed] completed

Analysing /home/lg/temp/b.1.fragment -> /home/lg/temp/b.1.analysed
Job = [b.1.fragment -> b.1.analysed] completed

Analysing /home/lg/temp/b.2.fragment -> /home/lg/temp/b.2.analysed
Job = [b.2.fragment -> b.2.analysed] completed

Analysing /home/lg/temp/b.3.fragment -> /home/lg/temp/b.3.analysed
Job = [b.3.fragment -> b.3.analysed] completed

Analysing /home/lg/temp/c.1.fragment -> /home/lg/temp/c.1.analysed
Job = [c.1.fragment -> c.1.analysed] completed

Analysing /home/lg/temp/c.2.fragment -> /home/lg/temp/c.2.analysed
Job = [c.2.fragment -> c.2.analysed] completed

Analysing /home/lg/temp/c.3.fragment -> /home/lg/temp/c.3.analysed
Job = [c.3.fragment -> c.3.analysed] completed

Completed Task = analyse_fragments

Recombine /home/lg/temp/a.1.analysed -> /home/lg/temp/a.final_result
Job = [[a.1.analysed] -> a.final_result] completed

Recombine /home/lg/temp/b.1.analysed -> /home/lg/temp/b.final_result
Recombine /home/lg/temp/b.2.analysed -> /home/lg/temp/b.final_result
Recombine /home/lg/temp/b.3.analysed -> /home/lg/temp/b.final_result

Job = [[b.1.analysed, b.2.analysed, b.3.analysed] -> b.final_result] completed
Recombine /home/lg/temp/c.1.analysed -> /home/lg/temp/c.final_result
Recombine /home/lg/temp/c.2.analysed -> /home/lg/temp/c.final_result
Recombine /home/lg/temp/c.3.analysed -> /home/lg/temp/c.final_result

Job = [[c.1.analysed, c.2.analysed, c.3.analysed] -> c.final_result] completed
Completed Task = recombine_analyses

1.45. Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate123

ruffus Documentation, Release 2.6.3

1.46 Chapter 17: Python Code for @combinations, @permutations
and all versus all @product

See also:

• Manual Table of Contents

• @combinations_with_replacement

• @combinations

• @permutations

• @product

• Back to Chapter 17: Preparing directories for output with @combinatorics()

1.46.1 Example code for @product

from ruffus import *
from ruffus.combinatorics import *

Three sets of initial files
@originate(['a.start', 'b.start'])
def create_initial_files_ab(output_file):

with open(output_file, "w") as oo: pass

@originate(['p.start', 'q.start'])
def create_initial_files_pq(output_file):

with open(output_file, "w") as oo: pass

@originate([['x.1_start', 'x.2_start'],
['y.1_start', 'y.2_start']])

def create_initial_files_xy(output_file):
with open(output_file, "w") as oo: pass

@product
@product(create_initial_files_ab, # Input

formatter("(.start)$"), # match input file set # 1

create_initial_files_pq, # Input
formatter("(.start)$"), # match input file set # 2

create_initial_files_xy, # Input
formatter("(.start)$"), # match input file set # 3

"{path[0][0]}/" # Output Replacement string
"{basename[0][0]}_vs_" #
"{basename[1][0]}_vs_" #
"{basename[2][0]}.product", #

"{path[0][0]}", # Extra parameter: path for 1st set of files, 1st file name

["{basename[0][0]}", # Extra parameter: basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
"{basename[2][0]}", # 3rd
])

def product_task(input_file, output_parameter, shared_path, basenames):

124 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

print "# basenames = ", " ".join(basenames)
print "input_parameter = ", input_file
print "output_parameter = ", output_parameter, "\n"

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

basenames = a p x
input_parameter = ('a.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_p_vs_x.product

basenames = a p y
input_parameter = ('a.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_p_vs_y.product

basenames = a q x
input_parameter = ('a.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_q_vs_x.product

basenames = a q y
input_parameter = ('a.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_q_vs_y.product

basenames = b p x
input_parameter = ('b.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_p_vs_x.product

basenames = b p y
input_parameter = ('b.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_p_vs_y.product

basenames = b q x
input_parameter = ('b.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_q_vs_x.product

basenames = b q y
input_parameter = ('b.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_q_vs_y.product

1.46.2 Example code for @permutations

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):

1.46. Chapter 17: Python Code for @combinations, @permutations and all versus all @product125

ruffus Documentation, Release 2.6.3

for output_file in output_files:
with open(output_file, "w") as oo: pass

@permutations
@permutations(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 2 at a time
2,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}.permutations",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
])

def permutations_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

1.46.3 Example code for @combinations

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],

126 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

['D.1_start', 'D.2_start']])
def create_initial_files_ABCD(output_files):

for output_file in output_files:
with open(output_file, "w") as oo: pass

@combinations
@combinations(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 3 at a time
3,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}_vs_"
"{basename[2][1]}.combinations",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
"{basename[2][0]}", # 3rd
])

def combinations_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - B - C
A - B - D
A - C - D
B - C - D

1.46.4 Example code for @combinations_with_replacement

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

1.46. Chapter 17: Python Code for @combinations, @permutations and all versus all @product127

ruffus Documentation, Release 2.6.3

@combinations_with_replacement
@combinations_with_replacement(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 2 at a time
2,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}.combinations_with_replacement",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2rd
])

def combinations_with_replacement_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - A
A - B
A - C
A - D
B - B
B - C
B - D
C - C
C - D
D - D

1.47 Chapter 20: Python Code for Manipulating task inputs via string
substitution using inputs() and add_inputs()

See also:

• Manual Table of Contents

• inputs() syntax

• add_inputs() syntax

• Back to Chapter 20: Manipulating task inputs via string substitution

128 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.47.1 Example code for adding additional input prerequisites per job with
add_inputs()

1. Example: compiling c++ code

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:

open(source_file, "w")

from ruffus import *

@transform(source_files, suffix(".cpp"), ".o")
def compile(input_filename, output_file):

open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
Job = [hasty.cpp -> hasty.o] completed
Job = [messy.cpp -> messy.o] completed
Job = [tasty.cpp -> tasty.o] completed

Completed Task = compile

2. Example: Adding a common header file with add_inputs()

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:

open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

@transform(source_files, suffix(".cpp"),
add header to the input of every job
add_inputs("universal.h"),
".o")

def compile(input_filename, output_file):
open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
Job = [[hasty.cpp, universal.h] -> hasty.o] completed
Job = [[messy.cpp, universal.h] -> messy.o] completed
Job = [[tasty.cpp, universal.h] -> tasty.o] completed

Completed Task = compile

1.47. Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs()
and add_inputs()

129

ruffus Documentation, Release 2.6.3

3. Example: Additional Input can be tasks

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
for source_file in source_files:

open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

make header files
@transform(source_files, suffix(".cpp"), ".h")
def create_matching_headers(input_file, output_file):

open(output_file, "w")

@transform(source_files, suffix(".cpp"),
add header to the input of every job

add_inputs("universal.h",
add result of task create_matching_headers to the input of every job
create_matching_headers),

".o")
def compile(input_filename, output_file):

open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
Job = [hasty.cpp -> hasty.h] completed
Job = [messy.cpp -> messy.h] completed
Job = [tasty.cpp -> tasty.h] completed

Completed Task = create_matching_headers
Job = [[hasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> hasty.o] completed
Job = [[messy.cpp, universal.h, hasty.h, messy.h, tasty.h] -> messy.o] completed
Job = [[tasty.cpp, universal.h, hasty.h, messy.h, tasty.h] -> tasty.o] completed

Completed Task = compile

4. Example: Add corresponding files using add_inputs() with formatter or regex

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
header_files = ["hasty.h", "tasty.h", "messy.h"]
for source_file in source_files + header_files:

open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

@transform(source_files,
formatter(".cpp$"),

corresponding header for each source file
add_inputs("{basename[0]}.h",

130 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

add header to the input of every job
"universal.h"),

"{basename[0]}.o")
def compile(input_filename, output_file):

open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
Job = [[hasty.cpp, hasty.h, universal.h] -> hasty.o] completed
Job = [[messy.cpp, messy.h, universal.h] -> messy.o] completed
Job = [[tasty.cpp, tasty.h, universal.h] -> tasty.o] completed

Completed Task = compile

1.47.2 Example code for replacing all input parameters with inputs()

5. Example: Running matching python scripts using inputs()

source files exist before our pipeline
source_files = ["hasty.cpp", "tasty.cpp", "messy.cpp"]
python_files = ["hasty.py", "tasty.py", "messy.py"]
for source_file in source_files + python_files:

open(source_file, "w")

common (universal) header exists before our pipeline
open("universal.h", "w")

from ruffus import *

@transform(source_files,
formatter(".cpp$"),
corresponding python file for each source file
inputs("{basename[0]}.py"),

"{basename[0]}.results")
def run_corresponding_python(input_filenames, output_file):

open(output_file, "w")

pipeline_run()

Giving:

>>> pipeline_run()
Job = [hasty.py -> hasty.results] completed
Job = [messy.py -> messy.results] completed
Job = [tasty.py -> tasty.results] completed

Completed Task = run_corresponding_python

1.47. Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs()
and add_inputs()

131

ruffus Documentation, Release 2.6.3

1.48 Chapter 21: Esoteric: Python Code for Generating parameters
on the fly with @files

See also:

• Manual Table of Contents

• @files on-the-fly syntax in detail

• Back to Chapter 21: Generating parameters on the fly

1.48.1 Introduction

This script takes N pairs of input file pairs (with the suffices .gene and .gwas)
and runs them against M sets of simulation data (with the suffix .simulation)
A summary per input file pair is then produced

In pseudo-code:

STEP_1:

for n_file in NNN_pairs_of_input_files:
for m_file in MMM_simulation_data:

[n_file.gene,
n_file.gwas,
m_file.simulation] -> n_file.m_file.simulation_res

STEP_2:

for n_file in NNN_pairs_of_input_files:

n_file.*.simulation_res -> n_file.mean

n = CNT_GENE_GWAS_FILES
m = CNT_SIMULATION_FILES

1.48.2 Code

from ruffus import *
import os

#888

constants

#888
working_dir = "temp_NxM"
simulation_data_dir = os.path.join(working_dir, "simulation")
gene_data_dir = os.path.join(working_dir, "gene")
CNT_GENE_GWAS_FILES = 2
CNT_SIMULATION_FILES = 3

132 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

#888

imports

#888
import os, sys
from itertools import izip
import glob
#888

Functions

#888

#___
#
get gene gwas file pairs
#
#___
def get_gene_gwas_file_pairs():

"""
Helper function to get all *.gene, *.gwas from the direction specified

in --gene_data_dir

Returns
file pairs with both .gene and .gwas extensions,
corresponding roots (no extension) of each file

"""
gene_files = glob.glob(os.path.join(gene_data_dir, "*.gene"))
gwas_files = glob.glob(os.path.join(gene_data_dir, "*.gwas"))
#
common_roots = set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gene_files))
common_roots &=set(map(lambda x: os.path.splitext(os.path.split(x)[1])[0], gwas_files))
common_roots = list(common_roots)
#
p = os.path; g_dir = gene_data_dir
file_pairs = [[p.join(g_dir, x + ".gene"), p.join(g_dir, x + ".gwas")] for x in common_roots]
return file_pairs, common_roots

#___
#
get simulation files
#
#___
def get_simulation_files():

"""
Helper function to get all *.simulation from the direction specified

in --simulation_data_dir
Returns

file with .simulation extensions,
corresponding roots (no extension) of each file

"""
simulation_files = glob.glob(os.path.join(simulation_data_dir, "*.simulation"))
simulation_roots =map(lambda x: os.path.splitext(os.path.split(x)[1])[0], simulation_files)
return simulation_files, simulation_roots

1.48. Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files 133

ruffus Documentation, Release 2.6.3

#888

Main logic

#888

#___
#
setup_simulation_data
#
#___

#
mkdir: makes sure output directories exist before task
#
@follows(mkdir(gene_data_dir, simulation_data_dir))
def setup_simulation_data ():

"""
create simulation files
"""
for i in range(CNT_GENE_GWAS_FILES):

open(os.path.join(gene_data_dir, "%03d.gene" % i), "w")
open(os.path.join(gene_data_dir, "%03d.gwas" % i), "w")

#
gene files without corresponding gwas and vice versa
open(os.path.join(gene_data_dir, "orphan1.gene"), "w")
open(os.path.join(gene_data_dir, "orphan2.gwas"), "w")
open(os.path.join(gene_data_dir, "orphan3.gwas"), "w")
#
for i in range(CNT_SIMULATION_FILES):

open(os.path.join(simulation_data_dir, "%03d.simulation" % i), "w")

#___
#
cleanup_simulation_data
#
#___
def try_rmdir (d):

if os.path.exists(d):
try:

os.rmdir(d)
except OSError:

sys.stderr.write("Warning:\t%s is not empty and will not be removed.\n" % d)

def cleanup_simulation_data ():
"""

134 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

cleanup files
"""
sys.stderr.write("Cleanup working directory and simulation files.\n")
#
cleanup gene and gwas files
#
for f in glob.glob(os.path.join(gene_data_dir, "*.gene")):

os.unlink(f)
for f in glob.glob(os.path.join(gene_data_dir, "*.gwas")):

os.unlink(f)
try_rmdir(gene_data_dir)
#
cleanup simulation
#
for f in glob.glob(os.path.join(simulation_data_dir, "*.simulation")):

os.unlink(f)
try_rmdir(simulation_data_dir)
#
cleanup working_dir
#
for f in glob.glob(os.path.join(working_dir, "simulation_results", "*.simulation_res")):

os.unlink(f)
try_rmdir(os.path.join(working_dir, "simulation_results"))
#
for f in glob.glob(os.path.join(working_dir, "*.mean")):

os.unlink(f)
try_rmdir(working_dir)

#___
#
Step 1:
#
for n_file in NNN_pairs_of_input_files:
for m_file in MMM_simulation_data:
#
[n_file.gene,
n_file.gwas,
m_file.simulation] -> working_dir/n_file.m_file.simulation_res
#
#___
def generate_simulation_params ():

"""
Custom function to generate
file names for gene/gwas simulation study
"""
simulation_files, simulation_file_roots = get_simulation_files()
gene_gwas_file_pairs, gene_gwas_file_roots = get_gene_gwas_file_pairs()
#
for sim_file, sim_file_root in izip(simulation_files, simulation_file_roots):

for (gene, gwas), gene_file_root in izip(gene_gwas_file_pairs, gene_gwas_file_roots):
#
result_file = "%s.%s.simulation_res" % (gene_file_root, sim_file_root)
result_file_path = os.path.join(working_dir, "simulation_results", result_file)
#
yield [gene, gwas, sim_file], result_file_path, gene_file_root, sim_file_root, result_file

1.48. Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files 135

ruffus Documentation, Release 2.6.3

#
mkdir: makes sure output directories exist before task
#
@follows(mkdir(working_dir, os.path.join(working_dir, "simulation_results")))
@files(generate_simulation_params)
def gwas_simulation(input_files, result_file_path, gene_file_root, sim_file_root, result_file):

"""
Dummy calculation of gene gwas vs simulation data
Normally runs in parallel on a computational cluster
"""
(gene_file,
gwas_file,
simulation_data_file) = input_files
#
simulation_res_file = open(result_file_path, "w")
simulation_res_file.write("%s + %s -> %s\n" % (gene_file_root, sim_file_root, result_file))

#___
#
Step 2:
#
Statistical summary per gene/gwas file pair
#
for n_file in NNN_pairs_of_input_files:
working_dir/simulation_results/n.*.simulation_res
-> working_dir/n.mean
#
#___

@collate(gwas_simulation, regex(r"simulation_results/(\d+).\d+.simulation_res"), r"\1.mean")
@posttask(lambda : sys.stdout.write("\nOK\n"))
def statistical_summary (result_files, summary_file):

"""
Simulate statistical summary
"""
summary_file = open(summary_file, "w")
for f in result_files:

summary_file.write(open(f).read())

pipeline_run([setup_simulation_data], multiprocess = 5, verbose = 2)
pipeline_run([statistical_summary], multiprocess = 5, verbose = 2)

uncomment to printout flowchar
#
pipeline_printout(sys.stdout, [statistical_summary], verbose=2)
graph_printout ("flowchart.jpg", "jpg", [statistical_summary])
#

cleanup_simulation_data ()

136 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

1.48.3 Resulting Output

>>> pipeline_run([setup_simulation_data], multiprocess = 5, verbose = 2)
Make directories [temp_NxM/gene, temp_NxM/simulation] completed

Completed Task = setup_simulation_data_mkdir_1
Job completed

Completed Task = setup_simulation_data

>>> pipeline_run([statistical_summary], multiprocess = 5, verbose = 2)
Make directories [temp_NxM, temp_NxM/simulation_results] completed

Completed Task = gwas_simulation_mkdir_1
Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/000.simulation] -> temp_NxM/simulation_results/001.000.simulation_res, 001, 000, 001.000.simulation_res] completed
Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/000.simulation] -> temp_NxM/simulation_results/000.000.simulation_res, 000, 000, 000.000.simulation_res] completed
Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/001.simulation] -> temp_NxM/simulation_results/001.001.simulation_res, 001, 001, 001.001.simulation_res] completed
Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/001.simulation] -> temp_NxM/simulation_results/000.001.simulation_res, 000, 001, 000.001.simulation_res] completed
Job = [[temp_NxM/gene/000.gene, temp_NxM/gene/000.gwas, temp_NxM/simulation/002.simulation] -> temp_NxM/simulation_results/000.002.simulation_res, 000, 002, 000.002.simulation_res] completed
Job = [[temp_NxM/gene/001.gene, temp_NxM/gene/001.gwas, temp_NxM/simulation/002.simulation] -> temp_NxM/simulation_results/001.002.simulation_res, 001, 002, 001.002.simulation_res] completed

Completed Task = gwas_simulation
Job = [[temp_NxM/simulation_results/000.000.simulation_res, temp_NxM/simulation_results/000.001.simulation_res, temp_NxM/simulation_results/000.002.simulation_res] -> temp_NxM/000.mean] completed
Job = [[temp_NxM/simulation_results/001.000.simulation_res, temp_NxM/simulation_results/001.001.simulation_res, temp_NxM/simulation_results/001.002.simulation_res] -> temp_NxM/001.mean] completed

1.49 Appendix 1: Python code for Flow Chart Colours with
pipeline_printout_graph(...)

See also:

• Manual Table of Contents

• pipeline_printout_graph(...)

• Download code

• Back to Flowchart colours

This example shows how flowchart colours can be customised.

1.49.1 Code

#!/usr/bin/env python
"""

play_with_colours.py
[--log_file PATH]
[--verbose]

"""

##
#
play_with_colours.py
#
#
Copyright (c) 7/13/2010 Leo Goodstadt
#

1.49. Appendix 1: Python code for Flow Chart Colours with pipeline_printout_graph(...) 137

ruffus Documentation, Release 2.6.3

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###

import sys, os

#888

options

#888

from optparse import OptionParser
import StringIO

parser = OptionParser(version="%play_with_colours 1.0",
usage = "\n\n play_with_colours "

"--flowchart FILE [options] "
"[--colour_scheme_index INT] "
"[--key_legend_in_graph]")

#
pipeline
#
parser.add_option("--flowchart", dest="flowchart",

metavar="FILE",
type="string",
help="Don't actually run any commands; just print the pipeline "

"as a flowchart.")
parser.add_option("--colour_scheme_index", dest="colour_scheme_index",

metavar="INTEGER",
type="int",
help="Index of colour scheme for flow chart.")

parser.add_option("--key_legend_in_graph", dest="key_legend_in_graph",
action="store_true", default=False,
help="Print out legend and key for dependency graph.")

(options, remaining_args) = parser.parse_args()
if not options.flowchart:

raise Exception("Missing mandatory parameter: --flowchart.\n")

138 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

#888

imports

#888

from ruffus import *
from ruffus.ruffus_exceptions import JobSignalledBreak

#888

Pipeline

#888

#
up to date tasks
#
@check_if_uptodate (lambda : (False, ""))
def Up_to_date_task1(infile, outfile):

pass

@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task1)
def Up_to_date_task2(infile, outfile):

pass

@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task2)
def Up_to_date_task3(infile, outfile):

pass

@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task3)
def Up_to_date_final_target(infile, outfile):

pass

#
Explicitly specified
#
@check_if_uptodate (lambda : (False, ""))
@follows(Up_to_date_task1)
def Explicitly_specified_task(infile, outfile):

pass

#
Tasks to run

1.49. Appendix 1: Python code for Flow Chart Colours with pipeline_printout_graph(...) 139

ruffus Documentation, Release 2.6.3

#
@follows(Explicitly_specified_task)
def Task_to_run1(infile, outfile):

pass

@follows(Task_to_run1)
def Task_to_run2(infile, outfile):

pass

@follows(Task_to_run2)
def Task_to_run3(infile, outfile):

pass

@check_if_uptodate (lambda : (False, ""))
@follows(Task_to_run2)
def Up_to_date_task_forced_to_rerun(infile, outfile):

pass

#
Final target
#
@follows(Up_to_date_task_forced_to_rerun, Task_to_run3)
def Final_target(infile, outfile):

pass

#
Ignored downstream
#
@follows(Final_target)
def Downstream_task1_ignored(infile, outfile):

pass

@follows(Final_target)
def Downstream_task2_ignored(infile, outfile):

pass

#888

Main logic

#888
from collections import defaultdict
custom_flow_chart_colour_scheme = defaultdict(dict)

#

140 Chapter 1. Start Here:

ruffus Documentation, Release 2.6.3

Base chart on this overall colour scheme index
#
custom_flow_chart_colour_scheme["colour_scheme_index"] = options.colour_scheme_index

#
Overriding colours
#
if options.colour_scheme_index is None:

custom_flow_chart_colour_scheme["Vicious cycle"]["linecolor"] = '"#FF3232"'
custom_flow_chart_colour_scheme["Pipeline"]["fontcolor"] = '"#FF3232"'
custom_flow_chart_colour_scheme["Key"]["fontcolor"] = "black"
custom_flow_chart_colour_scheme["Key"]["fillcolor"] = '"#F6F4F4"'
custom_flow_chart_colour_scheme["Task to run"]["linecolor"] = '"#0044A0"'
custom_flow_chart_colour_scheme["Up-to-date"]["linecolor"] = "gray"
custom_flow_chart_colour_scheme["Final target"]["fillcolor"] = '"#EFA03B"'
custom_flow_chart_colour_scheme["Final target"]["fontcolor"] = "black"
custom_flow_chart_colour_scheme["Final target"]["color"] = "black"
custom_flow_chart_colour_scheme["Final target"]["dashed"] = 0
custom_flow_chart_colour_scheme["Vicious cycle"]["fillcolor"] = '"#FF3232"'
custom_flow_chart_colour_scheme["Vicious cycle"]["fontcolor"] = 'white'
custom_flow_chart_colour_scheme["Vicious cycle"]["color"] = "white"
custom_flow_chart_colour_scheme["Vicious cycle"]["dashed"] = 0
custom_flow_chart_colour_scheme["Up-to-date task"]["fillcolor"] = '"#B8CC6E"'
custom_flow_chart_colour_scheme["Up-to-date task"]["fontcolor"] = '"#006000"'
custom_flow_chart_colour_scheme["Up-to-date task"]["color"] = '"#006000"'
custom_flow_chart_colour_scheme["Up-to-date task"]["dashed"] = 0
custom_flow_chart_colour_scheme["Down stream"]["fillcolor"] = "white"
custom_flow_chart_colour_scheme["Down stream"]["fontcolor"] = "gray"
custom_flow_chart_colour_scheme["Down stream"]["color"] = "gray"
custom_flow_chart_colour_scheme["Down stream"]["dashed"] = 0
custom_flow_chart_colour_scheme["Explicitly specified task"]["fillcolor"] = "transparent"
custom_flow_chart_colour_scheme["Explicitly specified task"]["fontcolor"] = "black"
custom_flow_chart_colour_scheme["Explicitly specified task"]["color"] = "black"
custom_flow_chart_colour_scheme["Explicitly specified task"]["dashed"] = 0
custom_flow_chart_colour_scheme["Task to run"]["fillcolor"] = '"#EBF3FF"'
custom_flow_chart_colour_scheme["Task to run"]["fontcolor"] = '"#0044A0"'
custom_flow_chart_colour_scheme["Task to run"]["color"] = '"#0044A0"'
custom_flow_chart_colour_scheme["Task to run"]["dashed"] = 0
custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["fillcolor"] = 'transparent'
custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["fontcolor"] = '"#0044A0"'
custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["color"] = '"#0044A0"'
custom_flow_chart_colour_scheme["Up-to-date task forced to rerun"]["dashed"] = 1
custom_flow_chart_colour_scheme["Up-to-date Final target"]["fillcolor"] = '"#EFA03B"'
custom_flow_chart_colour_scheme["Up-to-date Final target"]["fontcolor"] = '"#006000"'
custom_flow_chart_colour_scheme["Up-to-date Final target"]["color"] = '"#006000"'
custom_flow_chart_colour_scheme["Up-to-date Final target"]["dashed"] = 0

if __name__ == '__main__':
pipeline_printout_graph (

open(options.flowchart, "w"),
use flowchart file name extension to decide flowchart format
e.g. svg, jpg etc.
os.path.splitext(options.flowchart)[1][1:],

final targets
[Final_target, Up_to_date_final_target],

1.49. Appendix 1: Python code for Flow Chart Colours with pipeline_printout_graph(...) 141

ruffus Documentation, Release 2.6.3

Explicitly specified tasks
[Explicitly_specified_task],

Do we want key legend
no_key_legend = not options.key_legend_in_graph,

Print all the task types whether used or not
minimal_key_legend = False,

user_colour_scheme = custom_flow_chart_colour_scheme,
pipeline_name = "Colour schemes")

142 Chapter 1. Start Here:

CHAPTER

TWO

OVERVIEW:

2.1 Cheat Sheet

The ruffus module is a lightweight way to add support for running computational pipelines.

Each stage or task in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple jobs.

143

ruffus Documentation, Release 2.6.3

2.1.1 1. Annotate functions with Ruffus decorators

Core

Decorator Syntax
@originate (Manual) @originate (output_files,

[extra_parameters,...])
@split (Manual) @split (

tasks_or_file_names,
output_files,
[extra_parameters,...])

@transform (Manual)

@transform (
tasks_or_file_names,
suffix(suffix_string),
output_pattern,
[extra_parameters,...])
@transform (
tasks_or_file_names,
regex(regex_pattern),
output_pattern,
[extra_parameters,...])

@merge (Manual) @merge
(tasks_or_file_names,
output,
[extra_parameters,...])

@posttask (Manual)

@posttask (
signal_task_completion_function
)
@posttask (touch_file(
’task1.completed’))

See Decorators for a complete list of decorators

2.1.2 2. Print dependency graph if necessary

• For a graphical flowchart in jpg, svg, dot, png, ps, gif formats:

pipeline_printout_graph ("flowchart.svg")

• For a text printout of all jobs

pipeline_printout()

2.1.3 3. Run the pipeline

pipeline_run(multiprocess = N_PARALLEL_JOBS)

144 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

See Decorators for more decorators

2.2 Pipeline functions

There are only four functions for Ruffus pipelines:

• pipeline_run executes a pipeline

• pipeline_printout prints a list of tasks and jobs which will be run in a pipeline

• pipeline_printout_graph prints a schematic flowchart of pipeline tasks in various graphical formats

• pipeline_get_task_names returns a list of all task names in the pipeline

2.2.1 pipeline_run

pipeline_run (target_tasks = [], forcedtorun_tasks = [], multiprocess = 1, logger = stderr_logger,
gnu_make_maximal_rebuild_mode = True, verbose =1, runtime_data = None, one_second_per_job = True,
touch_files_only = False, exceptions_terminate_immediately = None, log_exceptions = None, history_file = None,
checksum_level = None, multithread = 0, verbose_abbreviated_path = None)

Purpose:

Runs all specified pipelined functions if they or any antecedent tasks are incomplete or out-of-
date.

Example:

#
Run task2 whatever its state, and also task1 and antecedents if they are incomplete
Do not log pipeline progress messages to stderr
#
pipeline_run([task1, task2], forcedtorun_tasks = [task2], logger = blackhole_logger)

Parameters:

• target_tasks Pipeline functions and any necessary antecedents (specified implicitly or with @follows) which
should be invoked with the appropriate parameters if they are incomplete or out-of-date.

• forcedtorun_tasks Optional. These pipeline functions will be invoked regardless of their state. Any antecedents
tasks will also be executed if they are out-of-date or incomplete.

• multiprocess Optional. The number of processes which should be dedicated to running in parallel independent
tasks and jobs within each task. If multiprocess is set to 1, the pipeline will execute in the main
process.

• multithread Optional. The number of threads which should be dedicated to running in parallel independent
tasks and jobs within each task. Should be used only with drmaa. Otherwise the CPython global interpreter
lock (GIL) will slow down your pipeline

• logger For logging messages indicating the progress of the pipeline in terms of tasks and jobs. Defaults to
outputting to sys.stderr. Setting logger=blackhole_logger will prevent any logging output.

• gnu_make_maximal_rebuild_mode Warning: This is a dangerous option. Use rarely and with caution

Optional parameter governing how Ruffus determines which part of the pipeline is out of date and needs
to be re-run. If set to False, ruffus will work back from the target_tasks and only execute the
pipeline after the first up-to-date tasks that it encounters. For example, if there are four tasks:

2.2. Pipeline functions 145

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

ruffus Documentation, Release 2.6.3

#
task1 -> task2 -> task3 -> task4 -> task5
#
target_tasks = [task5]

If task3() is up-to-date, then only task4() and task5() will be run. This will be the case even if
task2() and task1() are incomplete.

This allows you to remove all intermediate results produced by task1 -> task3.

• verbose Optional parameter indicating the verbosity of the messages sent to logger: (Defaults to level 1 if
unspecified)

– level 0 : nothing

– level 1 : Out-of-date Task names

– level 2 : All Tasks (including any task function docstrings)

– level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

– level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

– level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

– level 6 : All jobs in All Tasks whether out of date or not

– level 10: logs messages useful only for debugging ruffus pipeline code

verbose >= 10 are intended for debugging Ruffus by the developers and the details are liable to
change from release to release

• runtime_data Experimental feature for passing data to tasks at run time

• one_second_per_job To work around poor file timepstamp resolution for some file systems. Defaults to True
if checksum_level is 0 forcing Tasks to take a minimum of 1 second to complete. If your file system has
coarse grained time stamps, you can turn on this delay by setting one_second_per_job to True

• touch_files_only Create or update output files only to simulate the running of the pipeline. Does not invoke
real task functions to run jobs. This is most useful to force a pipeline to acknowledge that a particular part
is now up-to-date.

This will not work properly if the identities of some files are not known before hand, and depend on run
time. In other words, not recommended if @split or custom parameter generators are being used.

• exceptions_terminate_immediately Exceptions cause immediate termination of the pipeline.

• log_exceptions Print exceptions to the logger as soon as they occur.

• history_file The database file which stores checksums and file timestamps for input/output files. Defaults to
.ruffus_history.sqlite if unspecified

• checksum_level Several options for checking up-to-dateness are available: Default is level 1.

– level 0 : Use only file timestamps

– level 1 : above, plus timestamp of successful job completion

– level 2 : above, plus a checksum of the pipeline function body

– level 3 : above, plus a checksum of the pipeline function default arguments and the additional argu-
ments passed in by task decorators

• verbose_abbreviated_path Whether input and output paths are abbreviated. Defaults to 2 if unspecified

– level 0: The full (expanded, abspath) input or output path

146 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

– level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with [„,]/

– level < 0: Input / Output parameters are truncated to MMM letters where
verbose_abbreviated_path ==-MMM. Subdirectories are first removed to see if this
allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by <???>

2.2.2 pipeline_printout

pipeline_printout (output_stream = sys.stdout, target_tasks = [], forcedtorun_tasks = [], verbose = 1, indent = 4,
gnu_make_maximal_rebuild_mode = True, wrap_width = 100, runtime_data = None, checksum_level = None, his-
tory_file = None, verbose_abbreviated_path = None)

Purpose:

Prints out all the pipelined functions which will be invoked given specified target_tasks
without actually running the pipeline. Because this is a simulation, some of the job parameters
may be incorrect. For example, the results of a @split operation is not predetermined and
will only be known after the pipelined function splits up the original data. Parameters of all
downstream pipelined functions will be changed depending on this initial operation.

Example:

#
Simulate running task2 whatever its state, and also task1 and antecedents
if they are incomplete
Print out results to STDOUT
#
pipeline_printout(sys.stdout, [task1, task2], forcedtorun_tasks = [task2], verbose = 1)

Parameters:

• output_stream Where to printout the results of simulating the running of the pipeline.

• target_tasks As in pipeline_run: Pipeline functions and any necessary antecedents (specified implicitly or with
@follows) which should be invoked with the appropriate parameters if they are incomplete or out-of-date.

• forcedtorun_tasks As in pipeline_run:These pipeline functions will be invoked regardless of their state. Any
antecedents tasks will also be executed if they are out-of-date or incomplete.

• verbose Optional parameter indicating the verbosity of the messages sent to logger: (Defaults to level 4 if
unspecified)

– level 0 : nothing

– level 1 : Out-of-date Task names

– level 2 : All Tasks (including any task function docstrings)

– level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

– level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

– level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

– level 6 : All jobs in All Tasks whether out of date or not

– level 10: logs messages useful only for debugging ruffus pipeline code

verbose >= 10 are intended for debugging Ruffus by the developers and the details are liable to
change from release to release

• indent Optional parameter governing the indentation when printing out the component job parameters of each
task function.

2.2. Pipeline functions 147

ruffus Documentation, Release 2.6.3

• gnu_make_maximal_rebuild_mode Warning: This is a dangerous option. Use rarely and with caution

See explanation in pipeline_run.

• wrap_width Optional parameter governing the length of each line before it starts wrapping around.

• runtime_data Experimental feature for passing data to tasks at run time

• history_file The database file which stores checksums and file timestamps for input/output files. Defaults to
.ruffus_history.sqlite if unspecified

• checksum_level Several options for checking up-to-dateness are available: Default is level 1.

– level 0 : Use only file timestamps

– level 1 : above, plus timestamp of successful job completion

– level 2 : above, plus a checksum of the pipeline function body

– level 3 : above, plus a checksum of the pipeline function default arguments and the additional argu-
ments passed in by task decorators

• verbose_abbreviated_path Whether input and output paths are abbreviated. Defaults to 2 if unspecified

– level 0: The full (expanded, abspath) input or output path

– level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with [„,]/

– level < 0: Input / Output parameters are truncated to MMM letters where
verbose_abbreviated_path ==-MMM. Subdirectories are first removed to see if this
allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed by <???>

2.2.3 pipeline_printout_graph

pipeline_printout_graph (stream, output_format = None, target_tasks = [], forcedtorun_tasks = [], ig-
nore_upstream_of_target = False, skip_uptodate_tasks = False, gnu_make_maximal_rebuild_mode = True,
test_all_task_for_update = True, no_key_legend = False, minimal_key_legend = True, user_colour_scheme = None,
pipeline_name = “Pipeline”, size = (11,8), dpi = 120, runtime_data = None, checksum_level = None, history_file =
None)

Purpose:

Prints out flowchart of all the pipelined functions which will be invoked given specified
target_tasks without actually running the pipeline.

See Flowchart colours

Example:

pipeline_printout_graph("flowchart.jpg", "jpg", [task1, task16],
forcedtorun_tasks = [task2],
no_key_legend = True)

Customising appearance:

The user_colour_scheme parameter can be used to change flowchart colours. This allows the
default Colour Schemes to be set. An example of customising flowchart appearance is available
(see code) .

Parameters:

• stream The file or file-like object to which the flowchart should be printed. If a string is provided, it is assumed
that this is the name of the output file which will be opened automatically.

148 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

• output_format If missing, defaults to the extension of the stream file name (i.e. jpg for a.jpg)

If the programme dot can be found on the executio path, this can be any number of formats supported by
Graphviz, including, for example, jpg, png, pdf, svg etc.
Otherwise, ruffus will only output without error in the dot format, which is a plain-text graph description
language.

• target_tasks As in pipeline_run: Pipeline functions and any necessary antecedents (specified implicitly or with
@follows) which should be invoked with the appropriate parameters if they are incomplete or out-of-date.

• forcedtorun_tasks As in pipeline_run:These pipeline functions will be invoked regardless of their state. Any
antecedents tasks will also be executed if they are out-of-date or incomplete.

• draw_vertically Draw flowchart in vertical orientation

• ignore_upstream_of_target Start drawing flowchart from specified target tasks. Do not draw tasks which are
downstream (subsequent) to the targets.

• ignore_upstream_of_target Do not draw up-to-date / completed tasks in the flowchart unless they are lie on the
execution path of the pipeline.

• gnu_make_maximal_rebuild_mode Warning: This is a dangerous option. Use rarely and with caution

See explanation in pipeline_run.

• test_all_task_for_update

Indicates whether intermediate tasks are out of date or not. Normally Ruffus will stop checking
dependent tasks for completion or whether they are out-of-date once it has discovered the maximal extent
of the pipeline which has to be run.
For displaying the flow of the pipeline, this is hardly very informative.

• no_key_legend Do not include key legend explaining the colour scheme of the flowchart.

• minimal_key_legend Do not include unused task types in key legend.

• user_colour_scheme Dictionary specifying colour scheme for flowchart

See complete list of Colour Schemes.

Colours can be names e.g. "black" or quoted hex e.g. ’"#F6F4F4"’ (note extra quotes)
Default values will be used unless specified

2.2. Pipeline functions 149

http://www.graphviz.org/doc/info/output.html
http://www.graphviz.org/
http://en.wikipedia.org/wiki/DOT_language

ruffus Documentation, Release 2.6.3

key Subkey
–
’colour_scheme_index’ index of default colour scheme,

0-7, defaults to 0 unless specified

– ’Final target’
– ’Explicitly
specified task’

– ’Task to run’
– ’Down stream’
– ’Up-to-date Final
target’

– ’Up-to-date task
forced to rerun’

– ’Up-to-date task’
– ’Vicious cycle’

– ’fillcolor’
– ’fontcolor’
– ’color’
– ’dashed’ = 0/1

Colours / attributes for each task
type

– ’Vicious cycle’
– ’Task to run’
– ’Up-to-date’

– ’linecolor’
Colours for arrows between tasks

– ’Pipeline’ – ’fontcolor’
Flowchart title colour

– ’Key’ – ’fontcolor’
– ’fillcolor’

Legend colours

Example:

Use colour scheme index = 1

pipeline_printout_graph ("flowchart.svg", "svg", [final_task],
user_colour_scheme = {

"colour_scheme_index" :1,
"Pipeline" :{"fontcolor" : '"#FF3232"' },
"Key" :{"fontcolor" : "Red",

"fillcolor" : '"#F6F4F4"' },
"Task to run" :{"linecolor" : '"#0044A0"' },
"Final target" :{"fillcolor" : '"#EFA03B"',

"fontcolor" : "black",
"dashed" : 0 }

})

• pipeline_name Specify title for flowchart

• size Size in inches for flowchart

• dpi Resolution in dots per inch. Ignored for svg output

• runtime_data Experimental feature for passing data to tasks at run time

• history_file The database file which stores checksums and file timestamps for input/output files. Defaults to
.ruffus_history.sqlite if unspecified

• checksum_level Several options for checking up-to-dateness are available: Default is level 1.

150 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

– level 0 : Use only file timestamps

– level 1 : above, plus timestamp of successful job completion

– level 2 : above, plus a checksum of the pipeline function body

– level 3 : above, plus a checksum of the pipeline function default arguments and the additional argu-
ments passed in by task decorators

2.2.4 pipeline_get_task_names

pipeline_get_task_names ()

Purpose:

Returns a list of all task names in the pipeline without running the pipeline or checking to see
if the tasks are connected correctly

Example:

Given:

from ruffus import *

@originate([])
def create_data(output_files):

pass

@transform(create_data, suffix(".txt"), ".task1")
def task1(input_files, output_files):

pass

@transform(task1, suffix(".task1"), ".task2")
def task2(input_files, output_files):

pass

Produces a list of three task names:

>>> pipeline_get_task_names ()
['create_data', 'task1', 'task2']

2.3 drmaa functions

drmaa_wrapper is not exported automatically by ruffus and must be specified explicitly:

imported ruffus.drmaa_wrapper explicitly
from ruffus.drmaa_wrapper import run_job, error_drmaa_job

2.3.1 run_job

run_job (cmd_str, job_name = None, job_other_options = None, job_script_directory = None, job_environment =
None, working_directory = None, logger = None, drmaa_session = None, retain_job_scripts = False, run_locally =
False, output_files = None, touch_only = False)

Purpose:

2.3. drmaa functions 151

ruffus Documentation, Release 2.6.3

ruffus.drmaa_wrapper.run_job dispatches a command with arguments to a cluster
or Grid Engine node and waits for the command to complete.

It is the semantic equivalent of calling os.system or subprocess.check_output.

Example:

from ruffus.drmaa_wrapper import run_job, error_drmaa_job
import drmaa
my_drmaa_session = drmaa.Session()
my_drmaa_session.initialize()

run_job("ls",
job_name = "test",
job_other_options="-P mott-flint.prja -q short.qa",
job_script_directory = "test_dir",
job_environment={ 'BASH_ENV' : '~/.bashrc' },
retain_job_scripts = True, drmaa_session=my_drmaa_session)

run_job("ls",
job_name = "test",
job_other_options="-P mott-flint.prja -q short.qa",
job_script_directory = "test_dir",
job_environment={ 'BASH_ENV' : '~/.bashrc' },
retain_job_scripts = True,
drmaa_session=my_drmaa_session,
working_directory = "/gpfs1/well/mott-flint/lg/src/oss/ruffus/doc")

#
catch exceptions
#
try:

stdout_res, stderr_res = run_job(cmd,
job_name = job_name,
logger = logger,
drmaa_session = drmaa_session,
run_locally = options.local_run,
job_other_options = get_queue_name())

relay all the stdout, stderr, drmaa output to diagnose failures
except error_drmaa_job as err:

raise Exception("\n".join(map(str,
["Failed to run:",
cmd,
err,
stdout_res,
stderr_res])))

my_drmaa_session.exit()

Parameters:

• cmd_str

The command which will be run remotely including all parameters

• job_name

A descriptive name for the command. This will be displayed by SGE qstat, for example. Defaults to
“ruffus_job”

• job_other_options

152 Chapter 2. Overview:

http://docs.python.org/2/library/os.html#os.system
http://docs.python.org/2/library/subprocess.html#subprocess.check_call
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qstat.html

ruffus Documentation, Release 2.6.3

Other drmaa parameters can be passed verbatim as a string.

Examples for SGE include project name (-P project_name), parallel environ-
ment (-pe parallel_environ), account (-A account_string), resource (-l
resource=expression), queue name (-q a_queue_name), queue priority (-p 15).

These are parameters which you normally need to include when submitting jobs interactively, for
example via SGE qsub or SLURM (srun)

• job_script_directory

The directory where drmaa temporary script files will be found. Defaults to the current working
directory.

• job_environment

A dictionary of key / values with environment variables. E.g. "{’BASH_ENV’:
’~/.bashrc’}"

• working_directory

– Sets the working directory.

– Should be a fully qualified path.

– Defaults to the current working directory.

• retain_job_scripts

Do not delete temporary script files containg drmaa commands. Useful for debugging, running on
the command line directly, and can provide a useful record of the commands.

• logger

For logging messages indicating the progress of the pipeline in terms of tasks and jobs. Takes objects
with the standard python logging module interface.

• drmaa_session

A shared drmaa session created and managed separately.

In the main part of your Ruffus pipeline script somewhere there should be code looking like this:

#
start shared drmaa session for all jobs / tasks in pipeline
#
import drmaa
drmaa_session = drmaa.Session()
drmaa_session.initialize()

#
pipeline functions
#

if __name__ == '__main__':
cmdline.run (options, multithread = options.jobs)
drmaa_session.exit()

• run_locally

Runs commands locally using the standard python subprocess module rather than dispatching re-
motely. This allows scripts to be debugged easily

• touch_only

2.3. drmaa functions 153

http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html
http://apps.man.poznan.pl/trac/slurm-drmaa/wiki/WikiStart#Nativespecification
https://computing.llnl.gov/linux/slurm/srun.html
https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/subprocess.html

ruffus Documentation, Release 2.6.3

Create or update Output files only to simulate the running of the pipeline. Does not dispatch com-
mands remotely or locally. This is most useful to force a pipeline to acknowledge that a particular
part is now up-to-date.

See also: pipeline_run(touch_files_only=True)

• output_files

Output files which will be created or updated if touch_only =True

2.4 Installation

Ruffus is a lightweight python module for building computational pipelines.

Note: Ruffus requires Python 2.6 or higher or Python 3.0 or higher

2.4.1 The easy way

Ruffus is available as an easy-install -able package on the Python Package Index.

sudo pip install ruffus --upgrade

This may also work for older installations:

easy_install -U ruffus

See below if eady_install is missing

2.4.2 The most up-to-date code:

• Download the latest sources or

• Check out the latest code from Google using git:

git clone https://bunbun68@code.google.com/p/ruffus/ .

• Bleeding edge Ruffus development takes place on github:

git clone git@github.com:bunbun/ruffus.git .

• To install after downloading, change to the , type:

python ./setup.py install

2.4.3 Prequisites

2.4.4 Installing easy_install

If your system doesn’t have easy_install, you can install one using a package manager, for example:

ubuntu/linux mint
$ sudo apt-get install python-setuptools
$ or sudo yum install python-setuptools

154 Chapter 2. Overview:

http://peak.telecommunity.com/DevCenter/EasyInstall
http://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/ruffus

ruffus Documentation, Release 2.6.3

or manually:

sudo curl http://peak.telecommunity.com/dist/ez_setup.py | python

or manually:

wget peak.telecommunity.com/dist/ez_setup.py
sudo python ez_setup.py

2.4.5 Installing pip

If Pip is missing:

$ sudo easy_install -U pip

2.4.6 Graphical flowcharts The most up-to-date code:

Ruffus relies on the dot programme from Graphviz (“Graph visualisation”) to make pretty flowchart
representations of your pipelines in multiple graphical formats (e.g. png, jpg). The crossplatform
Graphviz package can be downloaded here for Windows,

Linux, Macs and Solaris. For Fedora, try

yum list 'graphviz*'

For ubuntu / Debian, try

sudo apt-get install graphviz

2.5 Design & Architecture

The ruffus module has the following design goals:

• Simplicity.

• Intuitive

• Lightweight

• Unintrusive

• Flexible/Powerful

Computational pipelines, especially in science, are best thought of in terms of data flowing through suc-
cessive, dependent stages (ruffus calls these tasks). Traditionally, files have been used to link pipelined
stages together. This means that computational pipelines can be managed using traditional software con-
struction (build) systems.

2.5.1 GNU Make

The grand-daddy of these is UNIX make. GNU make is ubiquitous in the linux world for installing and
compiling software. It has been widely used to build computational pipelines because it supports:

• Stopping and restarting computational processes

• Running multiple, even thousands of jobs in parallel

2.5. Design & Architecture 155

http://www.graphviz.org/
http://www.graphviz.org/Download.php
http://en.wikipedia.org/wiki/Make_(software)
http://www.gnu.org/software/make/

ruffus Documentation, Release 2.6.3

Deficiencies of make / gmake

However, make and GNU make use a specialised (domain-specific) language, which has is been much
criticised because of poor support for modern programming languages features, such as variable scope,
pattern matching, debugging. Make scripts require large amounts of often obscure shell scripting and
makefiles can quickly become unmaintainable.

2.5.2 Scons, Rake and other Make alternatives

Many attempts have been made to produce a more modern version of make, with less of its historical
baggage. These include the Java-based Apache ant which is specified in xml.

More interesting are a new breed of build systems whose scripts are written in modern programming
languages, rather than a specially-invented “build” specificiation syntax. These include the Python scons,
Ruby rake and its python port Smithy.

The great advantages are that computation pipelines do not need to be artificially parcelled out between
(the often second-class) workflow management code, and the logic which does the real computation in the
pipeline. It also means that workflow management can use all the standard language and library features,
for example, to read in directories, match file names using regular expressions and so on.

Ruffus is much like scons in that the modern dynamic programming language python is used seamlessly
throughout its pipeline scripts.

Implicit dependencies: disadvantages of make / scons / rake

Although Python scons and Ruby rake are in many ways more powerful and easier to use for building
software, they are still an imperfect fit to the world of computational pipelines.

This is a result of the way dependencies are specified, an essential part of their design inherited from GNU
make.

The order of operations in all of these tools is specified in a declarative rather than imperative manner.
This means that the sequence of steps that a build should take are not spelled out explicity and directly.
Instead recipes are provided for turning input files of each type to another.

So, for example, knowing that a->b, b->c, c->d, the build system can infer how to get from a to d by
performing the necessary operations in the correct order.

This is immensely powerful for three reasons:

1. The plumbing, such as dependency checking, passing output from one stage to another, are
handled automatically by the build system. (This is the whole point!)

2. The same recipe can be re-used at different points in the build.

3. Intermediate files do not need to be retained.
Given the automatic inference that a->b->c->d, we don’t need to keep b and c files around
once d has been produced.

The disadvantage is that because stages are specified only indirectly, in terms of file name matches, the
flow through a complex build or a pipeline can be difficult to trace, and nigh impossible to debug when
there are problems.

156 Chapter 2. Overview:

http://www.gnu.org/software/make/
http://ant.apache.org/
http://www.scons.org/
http://rake.rubyforge.org/
http://packages.python.org/Smithy/
http://www.scons.org/
http://rake.rubyforge.org/
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/

ruffus Documentation, Release 2.6.3

Explicit dependencies in Ruffus

Ruffus takes a different approach. The order of operations is specified explicitly rather than inferred
indirectly from the input and output types. So, for example, we would explicitly specify three successive
and linked operations a->b, b->c, c->d. The build system knows that the operations always proceed
in this order.

Looking at a Ruffus script, it is always clear immediately what is the succession of computational steps
which will be taken.

Ruffus values clarity over syntactic cleverness.

Static dependencies: What make / scons / rake can’t do (easily)

GNU make, scons and rake work by infer a static dependency (diacyclic) graph between all the files
which are used by a computational pipeline. These tools locate the target that they are supposed to build
and work backward through the dependency graph from that target, rebuilding anything that is out of
date.This is perfect for building software, where the list of files data files can be computed statically at
the beginning of the build.

This is not ideal matches for scientific computational pipelines because:

• Though the stages of a pipeline (i.e. compile or DNA alignment) are invariably well-specified in
advance, the number of operations (jobs) involved at each stage may not be.

• A common approach is to break up large data sets into manageable chunks which can be operated
on in parallel in computational clusters or farms (See embarassingly parallel problems).
This means that the number of parallel operations or jobs varies with the data (the number of
manageable chunks), and dependency trees cannot be calculated statically beforehand.

Computational pipelines require dynamic dependencies which are not calculated up-front, but at each
stage of the pipeline

This is a known issue with traditional build systems each of which has partial strategies to work around
this problem:

• gmake always builds the dependencies when first invoked, so dynamic dependencies require (com-
plex!) recursive calls to gmake

• Rake dependencies unknown prior to running tasks.

• Scons: Using a Source Generator to Add Targets Dynamically

Ruffus explicitly and straightforwardly handles tasks which produce an indeterminate (i.e. runtime de-
pendent) number of output, using its @split, @transform, merge function annotations.

2.5.3 Managing pipelines stage-by-stage using Ruffus

Ruffus manages pipeline stages directly.

1. The computational operations for each stage of the pipeline are written by you, in separate python
functions.
(These correspond to gmake pattern rules)

2. The dependencies between pipeline stages (python functions) are specified up-front.

2.5. Design & Architecture 157

http://www.gnu.org/software/make/
http://www.scons.org/
http://rake.rubyforge.org/
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://objectmix.com/ruby/759716-rake-dependencies-unknown-prior-running-tasks-2.html
http://www.scons.org/wiki/DynamicSourceGenerator
http://www.gnu.org/software/make/manual/make.html#Pattern-Rules

ruffus Documentation, Release 2.6.3

These can be displayed as a flow chart.

3. Ruffus makes sure pipeline stage functions are called in the right order, with the right parameters,
running in parallel using multiprocessing if necessary.

4. Data file timestamps can be used to automatically determine if all or any parts of the pipeline are
out-of-date and need to be rerun.

5. Separate pipeline stages, and operations within each pipeline stage, can be run in parallel provided
they are not inter-dependent.

Another way of looking at this is that ruffus re-constructs datafile dependencies dynamically on-the-fly
when it gets to each stage of the pipeline, giving much more flexibility.

Disadvantages of the Ruffus design

Are there any disadvantages to this trade-off for additional clarity?

1. Each pipeline stage needs to take the right input and output. For example if we specified the steps in
the wrong order: a->b, c->d, b->c, then no useful output would be produced.

2. We cannot re-use the same recipes in different parts of the pipeline

3. Intermediate files need to be retained.

In our experience, it is always obvious when pipeline operations are in the wrong order, precisely because
the order of computation is the very essense of the design of each pipeline. Ruffus produces extra di-
agnostics when no output is created in a pipeline stage (usually happens for incorrectly specified regular

158 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

expressions.)

Re-use of recipes is as simple as an extra call to common function code.

Finally, some users have proposed future enhancements to Ruffus to handle unnecessary temporary /
intermediate files.

2.5.4 Alternatives to Ruffus

A comparison of more make-like tools is available from Ian Holmes’ group.

Build systems include:

• GNU make

• scons

• ant

• rake

There are also complete workload managements systems such as Condor. Various bioinformatics
pipelines are also available, including that used by the leading genome annotation website Ensembl,
Pegasys, GPIPE, Taverna, Wildfire, MOWserv, Triana, Cyrille2 etc. These all are either hardwired to
specific databases, and tasks, or have steep learning curves for both the scientist/developer and the IT
system administrators.

Ruffus is designed to be lightweight and unintrusive enough to use for writing pipelines with just 10 lines
of code.

See also:

Bioinformatics workload managements systems

Condor: http://www.cs.wisc.edu/condor/description.html

Ensembl Analysis pipeline: http://www.ncbi.nlm.nih.gov/pubmed/15123589

Pegasys: http://www.ncbi.nlm.nih.gov/pubmed/15096276

GPIPE: http://www.biomedcentral.com/pubmed/15096276

Taverna: http://www.ncbi.nlm.nih.gov/pubmed/15201187

Wildfire: http://www.biomedcentral.com/pubmed/15788106

MOWserv: http://www.biomedcentral.com/pubmed/16257987

Triana: http://dx.doi.org/10.1007/s10723-005-9007-3

Cyrille2: http://www.biomedcentral.com/1471-2105/9/96

Acknowledgements

• Bruce Eckel’s insightful article on A Decorator Based Build System was the obvious inspiration for the use of
decorators in Ruffus.

The rest of the Ruffus takes uses a different approach. In particular:

1. Ruffus uses task-based not file-based dependencies

2.5. Design & Architecture 159

http://biowiki.org/MakeComparison
http://www.gnu.org/software/make/
http://www.scons.org/
http://ant.apache.org/
http://rake.rubyforge.org/
http://www.cs.wisc.edu/condor/description.html
http://www.ncbi.nlm.nih.gov/pubmed/15123589
http://www.ncbi.nlm.nih.gov/pubmed/15096276
http://www.biomedcentral.com/pubmed/15096276
http://www.ncbi.nlm.nih.gov/pubmed/15201187
http://www.biomedcentral.com/pubmed/15788106
http://www.biomedcentral.com/pubmed/16257987
http://dx.doi.org/10.1007/s10723-005-9007-3
http://www.biomedcentral.com/1471-2105/9/96
http://www.artima.com/weblogs/viewpost.jsp?thread=241209

ruffus Documentation, Release 2.6.3

2. Ruffus tries to have minimal impact on the functions it decorates.

Bruce Eckel’s design wraps functions in “rule” objects.

Ruffus tasks are added as attributes of the functions which can be still be called normally. This is how
Ruffus decorators can be layered in any order onto the same task.

• Languages like c++ and Java would probably use a “mixin” approach. Python’s easy support for reflection
and function references, as well as the necessity of marshalling over process boundaries, dictated the internal
architecture of Ruffus.

• The Boost Graph library for text book implementations of directed graph traversals.

• Graphviz. Just works. Wonderful.

• Andreas Heger, Christoffer Nellåker and Grant Belgard for driving Ruffus towards ever simpler syntax.

2.6 Major Features added to Ruffus

Note: See To do list for future enhancements to Ruffus

2.6.1 version 2.6.3

25th April 2015

1) Bug fixes and minor enhancements

• @transform(..., suffix(“xxx”), output_dir = “/new/output/path”) works even when the ouput has more than one
file (github)

• @subdivide(..., suffix(“xxx”), output_dir = “/new/output/path”) works in exactly the same way as @trans-
form(..., outputdir=”xxx”) (github)

• ruffus.drmaa_wrapper.run_job() works with python3 (github)

• ruffus.drmaa.wrapper.run_job_locally() allows env to be set (environment) (github)

• New object-orientated style syntax and ruffus.cmdline.run (github)

2.6.2 version 2.6.2

12th March 2015

1) Bug fixes

• pipeline_printout_graph() incompatibility with python3 fixed

• checkpointing did not work correctly with @split(...) and @subdivide(...)

160 Chapter 2. Overview:

http://www.boost.org
http://www.graphviz.org/

ruffus Documentation, Release 2.6.3

2) @transform ‘(..., suffix(“xxx”), output_dir = “/new/output/path”)

Thanks to the suggestion of Milan Simonovic.

@transform(..., suffix(...)) has easy to understand syntax and takes care of all the common use cases of
Ruffus.

However, when we need to place the output in a different directories, we suddenly have to plunge into the
deep end and parse file paths using regex() or formatter().

Now, @transform takes an optional output_dir named parameter so that we can continue to use
suffix() even when the output needs to go into a new directory.

#
input/a.fasta -> output/a.sam
input/b.fasta -> output/b.sam
#
starting_files = ["input/a.fasta","input/b.fasta"]
@transform(starting_files,

suffix('.fasta'),
'.sam',
output_dir = "output")

def map_dna_sequence(input_file, output_file) :
pass

See example test\test_suffix_output_dir.py

2) Named parameters

Decorators can take named parameters.

These are self documenting, and improve clarity.

Note that the usual Python rules for function parameters apply:

• Positional arguments must precede named arguments

• Named arguments cannot be used to fill in for “missing” positional arguments

For example the following two functions are identical:

Positional parameters:

@merge(prev_task, ["a.summary", "b.summary"], 14, "extra_info", {"a":45, "b":5})
def merge_task(inputs, outputs, extra_num, extra_str, extra_dict):

pass

Named parameters:

new style is a bit clearer
@merge(input = prev_task,

output = ["a.summary", "b.summary"],
extras = [14, "extra_info", {"a":45, "b":5}]
)

def merge_task(inputs, outputs, extra_num, extra_str, extra_dict):
pass

Warning: ,extras= takes all the extras parameters (14, "extra_info", {"a":45,
"b":5}) as a single list

• @split(...) and @merge(...)

2.6. Major Features added to Ruffus 161

ruffus Documentation, Release 2.6.3

– input

– output

– [extras]

• @transform(...) and @mkdir(...)

– input

– filter

– [replace_inputs or add_inputs]

– output

– [extras]

– [output_dir]

• @collate(...) and @subdivide(...)

– input

– filter

– output

– [extras]

• @originate(...)

– output

– [extras]

• @product(...), @permutations(...), @combinations(...), and @combinations_with_replacement(...)

– input

– filter

– [input2...NNN] (only for product)

– [filter2...NNN] (only for product) where NNN is an incrementing number

– tuple_size (except for product)

– [replace_inputs or add_inputs]

– output

– [extras]

3) New object orientated syntax for Ruffus

Ruffus Pipelines can now be created directly using the new Pipeline and Task objects instead of via
decorators.

make ruffus pipeline
my_pipeline = Pipeline(name = "test")
my_pipeline.transform(task_func = map_dna_sequence,

input = starting_files,
filter = suffix('.fasta'),
output = '.sam',
output_dir = "output")

162 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

my_pipeline.run()

This new syntax is fully compatible and inter-operates with traditional Ruffus syntax using decorators.

Apart from cosmetic changes, the new syntax allows different instances of modular Ruffus sub-pipelines
to be defined separately, in different python modules and then joined together flexible at runtime.

The new syntax and discussion are introduced here.

2.6.3 version 2.5

6th August 2014

1) Python3 compatability (but at least python 2.6 is now required)

Ruffus v2.5 is now python3 compatible. This has required surprisingly many changes to the codebase.
Please report any bugs to me.

Note: Ruffus now requires at least python 2.6
It proved to be impossible to support python 2.5 and python 3.x at the same time.

2) Ctrl-C interrupts

Ruffus now mostly(!) terminates gracefully when interrupted by Ctrl-C .

Please send me bug reports for when this doesn’t work with a minimally reproducible case.

This means that, in general, if an Exception is thrown during your pipeline but you don’t want to wait
for the rest of the jobs to complete, you can still press Ctrl-C at any point. Note that you may still need to
clean up spawned processes, for example, using qdel if you are using Ruffus.drmaa_wrapper

3) Customising flowcharts in pipeline_printout_graph() with @graphviz

Contributed by Sean Davis, with improved syntax via Jake Biesinger

The graphics for each task can have its own attributes (URL, shape, colour) etc. by adding graphviz
attributes using the @graphviz decorator.

• This allows HTML formatting in the task names (using the label parameter as in the following
example). HTML labels must be enclosed in < and >. E.g.

label = "<Line
 wrapped task_name()>"

• You can also opt to keep the task name and wrap it with a prefix and suffix:

label_suffix = "??? ", label_prefix = ": What is this?"

• The URL attribute allows the generation of clickable svg, and also client / server side image maps
usable in web pages. See Graphviz documentation

Example:

2.6. Major Features added to Ruffus 163

http://www.graphviz.org/doc/info/attrs.html
http://www.graphviz.org/doc/info/attrs.html
http://www.graphviz.org/content/output-formats#dimap

ruffus Documentation, Release 2.6.3

@graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"',
color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"',
label_suffix = "???", label_prefix = "What is this?
 ",
label = "<What isthis>",
shape= "component", height = 1.5, peripheries = 5,
style="dashed")

def Up_to_date_task2(infile, outfile):
pass

Can use dictionary if you wish...
graphviz_params = {"URL":"http://cnn.com", "fontcolor": '"#FF00FF"'}
@graphviz(**graphviz_params)
def myTask(input,output):

pass

4. Consistent verbosity levels

The verbosity levels are now more fine-grained and consistent between pipeline_printout and
pipeline_run. Note that At verbosity > 2, pipeline_run outputs lists of up-to-date tasks before run-
ning the pipeline. Many users who defaulted to using a verbosity of 3 may want to move up to verbose
= 4.

• level 0 : Nothing

• level 1 : Out-of-date Task names

• level 2 : All Tasks (including any task function docstrings)

• level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

• level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

• level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

• level 6 : All jobs in All Tasks whether out of date or not

• level 10: Logs messages useful only for debugging ruffus pipeline code

• Defaults to level 4 for pipeline_printout: Out of date jobs, with explanations and warnings

• Defaults to level 1 for pipeline_run: Out-of-date Task names

5. Allow abbreviated paths from pipeline_run or pipeline_printout

Note: Please contact me with suggestions if you find the abbreviations useful but “aesthetically chal-
lenged”!

164 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

Some pipelines produce interminable lists of long filenames. It would be nice to be able to abbreviate this
to just enough information to follow the progress.

Ruffus now allows either

1. Only the nth top level sub-directories to be included

2. The message to be truncated to a specified number of characters (to fit on a line, for example)

Note that the number of characters specified is the separate length of the input and output
parameters, not the entire message. You many need to specify a smaller limit that you expect
(e.g. 60 rather than 80)

pipeline_printout(verbose_abbreviated_path = NNN)
pipeline_run(verbose_abbreviated_path = -MMM)

The verbose_abbreviated_path parameter restricts the length of input / output file paths to either

• NNN levels of nested paths

• A total of MMM characters, MMM is specified by setting
verbose_abbreviated_path to -MMM (i.e. negative values)

verbose_abbreviated_path defaults to 2

For example:

Given ["aa/bb/cc/dddd.txt", "aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt"]

Original relative paths
"[aa/bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

Full abspath
verbose_abbreviated_path = 0
"[/test/ruffus/src/aa/bb/cc/dddd.txt, /test/ruffus/src/aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

Specifed level of nested directories
verbose_abbreviated_path = 1
"[.../dddd.txt, .../gggg.txt]"

verbose_abbreviated_path = 2
"[.../cc/dddd.txt, .../ffff/gggg.txt]"

verbose_abbreviated_path = 3
"[.../bb/cc/dddd.txt, .../eeee/ffff/gggg.txt]"

Truncated to MMM characters
verbose_abbreviated_path = -60
"<???> /bb/cc/dddd.txt, aaa/bbbb/cccc/eeed/eeee/ffff/gggg.txt]"

If you are using ruffus.cmdline, the abbreviated path lengths can be specified on the command line
as an extension to the verbosity:

verbosity of 4
yourscript.py --verbose 4

display three levels of nested directories
yourscript.py --verbose 4:3

restrict input and output parameters to 60 letters
yourscript.py --verbose 4:-60

2.6. Major Features added to Ruffus 165

ruffus Documentation, Release 2.6.3

The number after the colon is the abbreviated path length

Other changes

• BUG FIX: Output producing wild cards was not saved in the checksum files!!!

• BUG FIX: @mkdir bug under Windows. Thanks to Sean Turley. (Aargh! Different exceptions are thrown in
Windows vs. Linux for the same condition!)

• Added pipeline_get_task_names(...) which returns all task name as a list of strings. Thanks to Clare Sloggett

2.6.4 version 2.4.1

26th April 2014

• Breaking changes to drmaa API suggested by Bernie Pope to ensure portability across different
drmaa implementations (SGE, SLURM etc.)

2.6.5 version 2.4

4th April 2014

Additions to ruffus namespace

• formatter() (syntax)

• originate() (syntax)

• subdivide() (syntax)

Installation: use pip

sudo pip install ruffus --upgrade

1) Command Line support

The optional Ruffus.cmdlinemodule provides support for a set of common command line arguments
which make writing Ruffus pipelines much more pleasant. See manual

2) Check pointing

• Contributed by Jake Biesinger

• See Manual

• Uses a fault resistant sqlite database file to log i/o files, and additional checksums

• defaults to checking file timestamps stored in the current directory
(ruffus_utilility.RUFFUS_HISTORY_FILE = ’.ruffus_history.sqlite’)

• pipeline_run(..., checksum_level = N, ...)

166 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

– level 0 = CHECKSUM_FILE_TIMESTAMPS : Classic mode. Use only file timestamps (no checksum file
will be created)

– level 1 = CHECKSUM_HISTORY_TIMESTAMPS : Also store timestamps in a database after successful
job completion

– level 2 = CHECKSUM_FUNCTIONS : As above, plus a checksum of the pipeline function body

– level 3 = CHECKSUM_FUNCTIONS_AND_PARAMS : As above, plus a checksum of the pipeline func-
tion default arguments and the additional arguments passed in by task decorators

– defaults to level 1

• Can speed up trivial tasks: Previously Ruffus always added an extra 1 second pause between tasks to guard
against file systems (Ext3, FAT, some NFS) with low timestamp granularity.

3) subdivide() (syntax)

• Take a list of input jobs (like @transform) but further splits each into multiple jobs, i.e. it is a many->even
more relationship

• synonym for the deprecated @split(..., regex(), ...)

4) mkdir() (syntax) with formatter(), suffix() and regex()

• allows directories to be created depending on runtime parameters or the output of previous tasks

• behaves just like @transform but with its own (internal) function which does the actual work of making a
directory

• Previous behavior is retained:mkdir continues to work seamlessly inside @follows

5) originate() (syntax)

• Generates output files without dependencies from scratch (ex nihilo!)

• For first step in a pipeline

• Task function obviously only takes output and not input parameters. (There are no inputs!)

• synonym for @split(None,...)

• See Summary / Manual

6) New flexible formatter() (syntax) alternative to regex() & suffix()

• Easy manipulation of path subcomponents in the style of os.path.split()

• Regular expressions are no longer necessary for path manipulation

• Familiar python syntax

• Optional regular expression matches

• Can refer to any in the list of N input files (not only the first file as for regex(...))

• Can even refer to individual letters within a match

2.6. Major Features added to Ruffus 167

http://docs.python.org/2/library/os.path.html#os.path.split

ruffus Documentation, Release 2.6.3

7) Combinatorics (all vs. all decorators)

• @product (See itertools.product)

• @permutations (See itertools.permutations)

• @combinations (See itertools.combinations)

• @combinations_with_replacement (See itertools.combinations_with_replacement)

• in optional combinatorics module

• Only formatter() provides the necessary flexibility to construct the output. (suffix() and regex() are not sup-
ported.)

• See Summary / Manual

8) drmaa support and multithreading:

• ruffus.drmaa_wrapper.run_job() (syntax)

• Optional helper module allows jobs to dispatch work to a computational cluster and wait until it completes.

• Requires multithread rather than multiprocess

9) pipeline_run(...) and exceptions

See Manual

• Optionally terminate pipeline after first exception

• Display exceptions without delay

10) Miscellaneous

Better error messages for formatter(), suffix() and regex() for pipeline_printout(..., verbose >= 3, ...)

• Error messages for showing mismatching regular expression and offending file name

• Wrong capture group names or out of range indices will raise informative Exception

2.6.6 version 2.3

1st September, 2013

• @active_if turns off tasks at runtime The Design and initial implementation were contributed
by Jacob Biesinger

Takes one or more parameters which can be either booleans or functions or callable objects
which return True / False:

run_if_true_1 = True
run_if_true_2 = False

@active_if(run_if_true, lambda: run_if_true_2)
def this_task_might_be_inactive():

pass

168 Chapter 2. Overview:

http://docs.python.org/2/library/itertools.html#itertools.product
http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/2/library/itertools.html#itertools.combinations
http://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement

ruffus Documentation, Release 2.6.3

The expressions inside @active_if are evaluated each time pipeline_run,
pipeline_printout or pipeline_printout_graph is called.

Dormant tasks behave as if they are up to date and have no output.

• Command line parsing

– Supports both argparse (python 2.7) and optparse (python 2.6):

– Ruffus.cmdline module is optional.

– See manual

• Optionally terminate pipeline after first exception To have all exceptions interrupt immediately:

pipeline_run(..., exceptions_terminate_immediately = True)

By default ruffus accumulates NN errors before interrupting the pipeline prematurely. NN is the
specified parallelism for pipeline_run(..., multiprocess = NN).

Otherwise, a pipeline will only be interrupted immediately if exceptions of type
ruffus.JobSignalledBreak are thrown.

• Display exceptions without delay

By default, Ruffus re-throws exceptions in ensemble after pipeline termination.

To see exceptions as they occur:

pipeline_run(..., log_exceptions = True)

logger.error(...) will be invoked with the string representation of the each excep-
tion, and associated stack trace.

The default logger prints to sys.stderr, but this can be changed to any class from the logging
module or compatible object via pipeline_run(..., logger = ???)

• Improved pipeline_printout()

– @split operations now show the 1->many output in pipeline_printout

This make it clearer that @split is creating multiple output parameters (rather than a
single output parameter consisting of a list):

Task = split_animals
Job = [None

-> cows
-> horses
-> pigs
, any_extra_parameters]

– File date and time are displayed in human readable form and out of date files are flagged with
asterisks.

2.6.7 version 2.2

22nd July, 2010

• Simplifying @transform syntax with suffix(...)

2.6. Major Features added to Ruffus 169

ruffus Documentation, Release 2.6.3

Regular expressions within ruffus are very powerful, and can allow files to be moved from
one directory to another and renamed at will.

However, using consistent file extensions and @transform(..., suffix(...))
makes the code much simpler and easier to read.

Previously, suffix(...) did not cooperate well with inputs(...). For example,
finding the corresponding header file (”.h”) for the matching input required a complicated
regex(...) regular expression and input(...). This simple case, e.g. matching
“something.c” with “something.h”, is now much easier in Ruffus.

For example:

source_files = ["something.c", "more_code.c"]
@transform(source_files, suffix(".c"), add_inputs(r"\1.h", "common.h"), ".o")
def compile(input_files, output_file):

(source_file,
header_file,
common_header) = input_files

call compiler to make object file

This is equivalent to calling:

compile(["something.c", "something.h", "common.h"], "something.o")
compile(["more_code.c", "more_code.h", "common.h"], "more_code.o")

The \1matches everything but the suffix and will be applied to both globs and file names.

For simplicity and compatibility with previous versions, there is always an implied r”1” before the output
parameters. I.e. output parameters strings are always substituted.

• Tasks and glob in inputs(...) and add_inputs(...)

globs and tasks can be added as the prerequisites / input files using inputs(...) and
add_inputs(...). glob expansions will take place when the task is run.

• Advanced form of @split with regex:

The standard @split divided one set of inputs into multiple outputs (the number of which
can be determined at runtime).

This is a one->many operation.

An advanced form of @split has been added which can split each of several files further.

In other words, this is a many->"many more" operation.

For example, given three starting files:

original_files = ["original_0.file",
"original_1.file",
"original_2.file"]

We can split each into its own set of sub-sections:

@split(original_files,
regex(r"starting_(\d+).fa"), # match starting files

r"files.split.\1.*.fa" # glob pattern
r"\1") # index of original file

def split_files(input_file, output_files, original_index):
"""

170 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

Code to split each input_file
"original_0.file" -> "files.split.0.*.fa"
"original_1.file" -> "files.split.1.*.fa"
"original_2.file" -> "files.split.2.*.fa"

"""

This is, conceptually, the reverse of the @collate(...) decorator

• Ruffus will complain about unescaped regular expression special characters:

Ruffus uses “\1” and “\2” in regular expression substitutions. Even seasoned python users
may not remember that these have to be ‘escaped’ in strings. The best option is to use ‘raw’
python strings e.g.

r"\1_substitutes\2correctly\3four\4times"

Ruffus will throw an exception if it sees an unescaped “\1” or “\2” in a file name, which
should catch most of these bugs.

• Prettier output from pipeline_printout_graph

Changed to nicer colours, symbols etc. for a more professional look. @split and @merge
tasks now look different from @transform. Colours, size and resolution are now fully
customisable:

pipeline_printout_graph(#...
user_colour_scheme = {

"colour_scheme_index":1,
"Task to run" : {"fillcolor":"blue"},
pipeline_name : "My flowchart",
size : (11,8),
dpi : 120)})

An SVG bug in firefox has been worked around so that font size are displayed correctly.

2.6.8 version 2.1.1

• @transform(.., add_inputs(...)) add_inputs(...) allows the addition of extra input dependencies / pa-
rameters for each job.

Unlike inputs(...), the original input parameter is retained:

from ruffus import *
@transform(["a.input", "b.input"], suffix(".input"), add_inputs("just.1.more","just.2.more"), ".output")
def task(i, o):
""

Produces:

Job = [[a.input, just.1.more, just.2.more] ->a.output]
Job = [[b.input, just.1.more, just.2.more] ->b.output]

Like inputs, add_inputs accepts strings, tasks and glob s This minor syntactic change promises add
much clarity to Ruffus code. add_inputs() is available for @transform, @collate and @split

2.6. Major Features added to Ruffus 171

ruffus Documentation, Release 2.6.3

2.6.9 version 2.1.0

• @jobs_limit Some tasks are resource intensive and too many jobs should not be run at the same time. Examples
include disk intensive operations such as unzipping, or downloading from FTP sites.

Adding:

@jobs_limit(4)
@transform(new_data_list, suffix(".big_data.gz"), ".big_data")
def unzip(i, o):
"unzip code goes here"

would limit the unzip operation to 4 jobs at a time, even if the rest of the pipeline runs highly in parallel.

(Thanks to Rob Young for suggesting this.)

2.6.10 version 2.0.10

• touch_files_only option for pipeline_run

When the pipeline runs, task functions will not be run. Instead, the output files for each job (in each task) will
be touch-ed if necessary. This can be useful for simulating a pipeline run so that all files look as if they are
up-to-date.

Caveats:

– This may not work correctly where output files are only determined at runtime, e.g. with @split

– Only the output from pipelined jobs which are currently out-of-date will be touch-ed. In other words, the
pipeline runs as normal, the only difference is that the output files are touch-ed instead of being created
by the python task functions which would otherwise have been called.

• Parameter substitution for inputs(...)

The inputs(...) parameter in @transform, @collate can now take tasks and glob s, and these will be expanded
appropriately (after regular expression replacement).

For example:

@transform("dir/a.input", regex(r"(.*)\/(.+).input"),
inputs((r"\1/\2.other", r"\1/*.more")), r"elsewhere/\2.output")

def task1(i, o):
"""
Some pipeline task
"""

Is equivalent to calling:

task1(("dir/a.other", "dir/1.more", "dir/2.more"), "elsewhere/a.output")

Here:

r"\1/*.more"

is first converted to:

r"dir/*.more"

which matches:

"dir/1.more"
"dir/2.more"

172 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

2.6.11 version 2.0.9

• Better display of logging output

• Advanced form of @split This is an experimental feature.

Hitherto, @split only takes 1 set of input (tasks/files/glob s) and split these into an indeterminate number of
output.

This is a one->many operation.

Sometimes it is desirable to take multiple input files, and split each of them further.

This is a many->many (more) operation.

It is possible to hack something together using @transform but downstream tasks would not aware that each
job in @transform produces multiple outputs (rather than one input, one output per job).

The syntax looks like:

@split(get_files, regex(r"(.+).original"), r"\1.*.split")
def split_files(i, o):

pass

If get_files() returned A.original, B.original and C.original, split_files() might lead
to the following operations:

A.original
-> A.1.original
-> A.2.original
-> A.3.original

B.original
-> B.1.original
-> B.2.original

C.original
-> C.1.original
-> C.2.original
-> C.3.original
-> C.4.original
-> C.5.original

Note that each input (A/B/C.original) can produce a number of output, the exact number of which does
not have to be pre-determined. This is similar to @split

Tasks following split_fileswill have ten inputs corresponding to each of the output from split_files.

If @transform was used instead of @split, then tasks following split_files would only have 3 inputs.

2.6.12 version 2.0.8

• File names can be in unicode

• File systems with 1 second timestamp granularity no longer cause problems.

2.6.13 version 2.0.2

• Much prettier /useful output from pipeline_printout

• New tutorial / manual

2.6. Major Features added to Ruffus 173

ruffus Documentation, Release 2.6.3

2.6.14 version 2.0

• Revamped documentation:

– Rewritten tutorial

– Comprehensive manual

– New syntax help

• Major redesign. New decorators include

– @split

– @transform

– @merge

– @collate

• Major redesign. Decorator inputs can mix

– Output from previous tasks

– glob patterns e.g. *.txt

– Files names

– Any other data type

2.6.15 version 1.1.4

Tasks can get their input by automatically chaining to the output from one or more parent tasks using
@files_re

2.6.16 version 1.0.7

Added proxy_logger module for accessing a shared log across multiple jobs in different processes.

2.6.17 version 1.0

Initial Release in Oxford

2.7 Fixed Bugs

Full list at “Latest Changes wiki entry”

2.8 New Object orientated syntax for Ruffus in Version 2.6

Ruffus Pipelines can now be created and manipulated directly using Pipeline and Task objects instead of
via decorators.

Note: You may want to go through the worked_example first.

174 Chapter 2. Overview:

http://docs.python.org/library/glob.html
http://code.google.com/p/ruffus/wiki/LatestChanges

ruffus Documentation, Release 2.6.3

2.8.1 Syntax

This traditional Ruffus code:

from ruffus import *

task function
starting_files = ["input/a.fasta","input/b.fasta"]
@transform(input = starting_files,

filter = suffix('.fasta'),
output = '.sam',
output_dir = "output")

def map_dna_sequence(input_file, output_file) :
pass

pipeline_run()

Can also be written as:

from ruffus import *

undecorated task function
def map_dna_sequence(input_file, output_file) :

pass

starting_files = ["input/a.fasta","input/b.fasta"]

make ruffus Pipeline() object
my_pipeline = Pipeline(name = "test")
my_pipeline.transform(task_func = map_dna_sequence,

input = starting_files,
filter = suffix('.fasta'),
output = '.sam',
output_dir = "output")

my_pipeline.run()

The two different syntax are almost identical:
The first parameter task_func=your_python_function is mandatory.
Otherwise, all other parameters are in the same order as before, and can be given by position or as named
arguments.

2.8.2 Advantages

These are some of the advantages of the new syntax:

1. Pipeline topology is assembled in one place

This is a matter of personal preference.

Nevertheless, using decorators to locally annotate python functions with pipeline parameters ar-
guably helps separation of concerns.

2. Pipelines can be created on the fly

For example, using parameters parsed from configuration files.

2.8. New Object orientated syntax for Ruffus in Version 2.6 175

ruffus Documentation, Release 2.6.3

Ruffus pipelines no longer have to be defined at global scope.

3. Reuse common sub-pipelines

Shared sub pipelines can be created from discrete python modules and joined together as needed.
Bioinformaticists may have “mapping”, “aligning”, “variant-calling” sub-pipelines etc.

4. Multiple Tasks can share the same python function

Tasks are normally referred to by their associated functions (as with decoratored Ruffus tasks).
However, you can also disambiguate Tasks by specifying their name directly.

5. Pipeline topology can be specified at run time

Some (especially bioinformatics) tasks require binary merging. This can be very inconvenient.

For example, if we have 8 data files, we need three successive rounds of merging (8->4->2->1) or
three tasks) to produce the output. But if we are given 10 data files, we now find that we needed to
have four tasks for four rounds of merging (10->5->3->2->1).

There was previously no easy way to arrange different Ruffus topologies in response to the data.
Now we can add as many extra merging tasks to our pipeline (all sharing the same underlying
python function) as needed.

2.8.3 Compatability

• The changes are fully backwards compatibile. All valid Ruffus code continues to work

• Decorators and Pipeline objects can be used interchangeably:

Decorated functions are automatically part of a default constructed Pipeline named "main".

main_pipeline = Pipeline.pipelines["main"]

In the following example, a pipeline using the Ruffus with classes syntax (1) and (3) has a traditionally
decorated task function in the middle (2).

from ruffus import *

get default pipeline
main_pipeline = Pipeline.pipelines["main"]

undecorated task functions
def compress_sam_to_bam(input_file, output_file) :

open(output_file, "w").close()

def create_files(output_file) :
open(output_file, "w").close()

#
1. Ruffus with classes
#
starting_files = main_pipeline.originate(create_files, ["input/a.fasta","input/b.fasta"])\

.follows(mkdir("input", "output"))

#
2. Ruffus with python decorations
#
@transform(starting_files,

suffix('.fasta'),

176 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

'.sam',
output_dir = "output")

def map_dna_sequence(input_file, output_file) :
open(output_file, "w").close()

#
3. Ruffus with classes
#
main_pipeline.transform(task_func = compress_sam_to_bam,

input = map_dna_sequence,
filter = suffix(".sam"),
output = ".bam")

main_pipeline.run()
or
pipeline_run()

2.8.4 Class methods

The ruffus.Pipeline class has the following self-explanatory methods:

Pipeline.run(...)
Pipeline.printout(...)
Pipeline.printout_graph(...)

These methods return a ruffus.Task object

Pipeline.originate(...)
Pipeline.transform(...)
Pipeline.split(...)
Pipeline.merge(...)
Pipeline.mkdir(...)

Pipeline.collate(...)
Pipeline.subdivide(...)

Pipeline.combinations(...)
Pipeline.combinations_with_replacement(...)
Pipeline.product(...)
Pipeline.permutations(...)

Pipeline.follows(...)
Pipeline.check_if_uptodate(...)
Pipeline.graphviz(...)

Pipeline.files(...)
Pipeline.parallel(...)

A Ruffus Task can be modified with the following methods

Task.active_if(...)
Task.check_if_uptodate(...)
Task.follows(...)
Task.graphviz(...)
Task.jobs_limit(...)
Task.mkdir(...)
Task.posttask(...)

2.8. New Object orientated syntax for Ruffus in Version 2.6 177

ruffus Documentation, Release 2.6.3

2.8.5 Call chaining

The syntax is designed to allow call chaining:

Pipeline.transform(...)\
.mkdir(follows(...))\
.active_if(...)\
.graphviz(...)

2.8.6 Referring to Tasks

Ruffus pipelines are chained together or specified by referring to each stage or Task.

(1) and (2) are ways to referring to tasks that Ruffus has always supported.

(3) - (6) are new to Ruffus v 2.6 but apply to both using decorators or the new Ruffus with classes syntax.

1) Python function

@transform(prev_task, ...)
def next_task():

pass

pipeline.transform(input = next_task, ...)

2) Python function name (using output_from)

pipeline.transform(input = output_from("prev_task"), ...)

Note: The above (1) and (2) only work if the Python function specifies the task unambiguously in a pipeline. If you
reuse the same Python function for multiple tasks, use the following methods.

Ruffus will complain with Exceptions if your code is ambiguous.

3) Task object

prev_task = pipeline.transform(...)

prev_task is a Task object
next_task = pipeline.transform(input = prev_task,)

4) Task name (using output_from)

name this task "prev_task"
pipeline.transform(name = "prev_task",...)

pipeline.transform(input = output_from("prev_task"),)

Note: Tasks from other pipelines can be referred to using full qualified names in the pipeline::task format

178 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

pipeline.transform(input = output_from("other_pipeline::prev_task"),)

5) Pipeline

When we are assembling our pipeline from sub-pipelines (especially those in other modules which other
people might have written) it is inconvenient to break encapsulation to find out the component Task of
the subpipeline.

In which case, the sub-pipeline author can assign particular tasks to the head and tail of the pipeline. The
pipeline will be an alias for these:

Note: these functions take lists
sub_pipeline.set_head_tasks([first_task])
sub_pipeline.set_tail_tasks([last_task])

first_task.set_input(...)
sub_pipeline.set_input(input = "*.txt")

(input = last_task,...)
main_pipeline.transform(input = sub_pipeline,)

If you don’t have access to a pipeline object, you can look it up via the Pipeline object

This is the default "main" pipeline which holds decorated task functions
main_pipeline = Pipeline.pipelines["main"]

my_pipeline = Pipeline("test")

alias_to_my_pipeline = Pipeline.pipelines["test"]

6) Lookup Task via the Pipeline

We can ask a Pipeline to lookup task names, functions and function names for us.

Lookup task name
pipeline.transform(input = pipeline["prev_task"],)

Lookup via python function
pipeline.transform(input = pipeline[python_function],)

Lookup via python function name
pipeline.transform(input = pipeline["python_function_name"],)

This is straightforward if the lookup is unambiguous for the pipeline.

If the names are not found in the pipeline, Ruffus will look across all pipelines.

Any ambiguities will result in an immediate error.

In extremis, you can use pipeline qualified names

Pipeline qualified task name
pipeline.transform(input = pipeline["other_pipeline::prev_task"],)

Note: All this will be much clearer going through the worked_example.

2.8. New Object orientated syntax for Ruffus in Version 2.6 179

ruffus Documentation, Release 2.6.3

2.9 Worked Example for New Object orientated syntax for Ruffus in
Version 2.6

Ruffus Pipelines can now be created and manipulated directly using Pipeline and Task objects instead of
via decorators.

For clarity, we use named parameters in this example. You can just as easily pass all parameters by
position.

2.9.1 Worked example

Note: Remember to look at the example code:

• Python Code for: New Object orientated syntax for Ruffus in Version 2.6

This example pipeline is a composite of three separately subpipelines each created by a python function
make_pipeline1() which is joined to another subpipeline created by make_pipeline2()

Although there are 13 different stages to this pipeline, we are using the same three python functions (but
supplying them with different data).

def task_originate(o):
Makes new files
...

def task_m_to_1(i, o):
Merges files together
...

def task_1_to_1(i, o):
One input per output
...

Pipeline factory

Let us start with a python function which makes a full formed sub pipeline useable as a modular building
block

Pipelines need to have a unique name
def make_pipeline1(pipeline_name,

starting_file_names):
pass

Note that we are passing the pipeline name as the first parameter.

All pipelines must have unique names

180 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

test_pipeline = Pipeline(pipeline_name)

new_task = test_pipeline.originate(task_func = task_originate,
output = starting_file_names)\

.follows(mkdir(tempdir), mkdir(tempdir + "testdir", tempdir + "testdir2"))\

.posttask(touch_file(tempdir + "testdir/whatever.txt"))

A new task is returned from test_pipeline.originate(...) which is then modified via
.follows(...) and .posttask(...). This is familiar Ruffus syntax only slightly rearranged.

We can change the output=starting_file_names later using set_output() but sometimes it
is just more convenient to pass this as a parameter to the pipeline factory function.

Note: The first, mandatory parameter is task_func = task_originate which is the python
function for this task

Three different ways of referring to input Tasks

Just as in traditional Ruffus, Pipelines are created by setting the input of one task to (the output of) its
predecessor.

test_pipeline.transform(task_func = task_m_to_1,
name = "add_input",
Lookup Task from function task_originate()
Needs to be unique in the pipeline
input = task_originate,
filter = regex(r"(.*)"),
add_inputs = add_inputs(tempdir + "testdir/whatever.txt"),
output = r"\1.22")

test_pipeline.transform(task_func = task_1_to_1,
name = "22_to_33",
Lookup Task from unique Task name = "add_input"
Function name is not unique in the pipeline
input = output_from("add_input"),
filter = suffix(".22"),
output = ".33")

tail_task = test_pipeline.transform(task_func = task_1_to_1,
name = "33_to_44",
Ask test_pipeline to lookup Task name = "22_to_33"
input = test_pipeline["22_to_33"],
filter = suffix(".33"),
output = ".44")

Head and Tail Tasks

Set the tail task: test_pipeline can be used as an input
without knowing the details of task names
#
Use Task object=tail_task directly
test_pipeline.set_tail_tasks([tail_task])

Set the head task: we can feed input into test_pipeline
without knowing the details of task names
test_pipeline.set_head_tasks([test_pipeline[task_originate]])

2.9. Worked Example for New Object orientated syntax for Ruffus in Version 2.6 181

ruffus Documentation, Release 2.6.3

return test_pipeline

By calling set_tail_tasks and set_head_tasks to assign the first and last stages of
test_pipeline, we can later use test_pipeline without knowing its component Tasks.

The last step is to return the fully formed pipeline instance

Another Pipeline factory

#
Returns a fully formed sub pipeline useable as a building block
#
def make_pipeline2(pipeline_name = "pipeline2", do_not_define_head_task = False):

test_pipeline2 = Pipeline(pipeline_name)
test_pipeline2.transform(task_func = task_1_to_1,

task name
name = "44_to_55",
placeholder: will be replaced later with set_input()
input = None,
filter = suffix(".44"),
output = ".55")

test_pipeline2.merge(task_func = task_m_to_1,
input = test_pipeline2["44_to_55"],
output = tempdir + "final.output",)

Lookup task using function name
This is unique within pipeline2
test_pipeline2.set_tail_tasks([test_pipeline2[task_m_to_1]])

Lookup task using task name
test_pipeline2.set_head_tasks([test_pipeline2["44_to_55"]])

return test_pipeline2

make_pipeline2() looks very similar to make_pipeline1 except that the input for the head task is left blank
for assigning later

Note that we can use task_m_to_1 to look up a Task (test_pipeline2[task_m_to_1]) even
though this function is also used by test_pipeline. There is no ambiguity so long as only one task in
test_pipeline2 uses this python function.

Creating multiple copies of a pipeline

Let us call make_pipeline1() to make two completely independent pipelines ("pipeline1a" and
"pipeline1b")

First two pipelines are created as separate instances by make_pipeline1()
pipeline1a = make_pipeline1(pipeline_name = "pipeline1a", starting_file_names = [tempdir + ss for ss in ("a.1", "b.1")])
pipeline1b = make_pipeline1(pipeline_name = "pipeline1b", starting_file_names = [tempdir + ss for ss in ("c.1", "d.1")])

We can also create a new instance of a pipeline by “cloning” an existing pipeline

pipeline1c is a clone of pipeline1b
pipeline1c = pipeline1b.clone(new_name = "pipeline1c")

Because "pipeline1c" is a clone of "pipeline1b", it shares exactly the same parameters. Let us
change this by giving "pipeline1c" its own starting files.

182 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

We can do this for normal (e.g. transform, split, merge etc) tasks by calling

transform_task.set_input(input = xxx)

@originate doesn’t take input but creates results specified in the output parameter. To finish setting up
pipeline1c:

Set the "originate" files for pipeline1c to ("e.1" and "f.1")
Otherwise they would use the original ("c.1", "d.1")
pipeline1c.set_output(output = [tempdir + ss for ss in ("e.1", "f.1")])

We only create one copy of pipeline2

pipeline2 = make_pipeline2()

Connecting pipelines together

Because we have previously assigned head and tail tasks, we can easily join the pipelines together:

Join all pipeline1a-c to pipeline2
pipeline2.set_input(input = [pipeline1a, pipeline1b, pipeline1c])

Running a composite pipeline

Ruffus automatically follows the antecedent dependencies of each task even if they are from another
pipeline.

This means that you can run composite pipelines seamlessly, without any effort:

Only runs pipeline1a
pipeline1a.run()

Runs pipeline1a,b,c -> pipeline2
pipeline2.run(multiprocess = 10, verbose = 0)

Note: Remember to look at the example code:

• Python Code for: New Object orientated syntax for Ruffus in Version 2.6

2.10 Python Code for: New Object orientated syntax for Ruffus in
Version 2.6

See also:

• new_syntax.worked_example

This code is adapted from test/test_subpipeline.py in the Ruffus distribution

2.10.1 Output

Let us save the script to test_subpipeline_cmdline.py

1. Try running the script as is:

2.10. Python Code for: New Object orientated syntax for Ruffus in Version 2.6 183

ruffus Documentation, Release 2.6.3

cleanup before and afterwards
$./test_subpipeline_cmdline.py --cleanup

2. If we printout the pipeline, we can see that, by default, the entire pipeline (with all its sub-pipelines)
will run.

grep Completed Tasks
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print

__
Tasks which will be run:

Task = "pipeline1a::mkdir('tempdir/') before task_originate "
Task = "pipeline1a::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1a::task_originate'
Task = 'pipeline1a::add_input'
Task = 'pipeline1a::22_to_33'
Task = 'pipeline1a::33_to_44'
Task = "pipeline1b::mkdir('tempdir/') before task_originate "
Task = "pipeline1b::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1b::task_originate'
Task = 'pipeline1b::add_input'
Task = 'pipeline1b::22_to_33'
Task = 'pipeline1b::33_to_44'
Task = "pipeline1c::mkdir('tempdir/') before task_originate "
Task = "pipeline1c::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1c::task_originate'
Task = 'pipeline1c::add_input'
Task = 'pipeline1c::22_to_33'
Task = 'pipeline1c::33_to_44'
Task = 'pipeline2::44_to_55'
Task = 'pipeline2::task_m_to_1'

1. Specifying either the main pipeline2 or the last task in pipeline2 produces the same output.
All the ancestral tasks in pipelines1a-c will be run automatically.

grep Completed Tasks
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --target_tasks pipeline2

$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --target_tasks pipeline2::task_m_to_1

2. Specifying only pipeline1a or any task in pipeline1a in --target_tasks will only run
the specified tasks in that subpipeline.

grep Completed Tasks
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --target_tasks pipeline1a
$./test_subpipeline_cmdline.py --cleanup --verbose 1 --just_print --forced_tasks pipeline1a::task_originate

Task = "pipeline1a::mkdir('tempdir/') before task_originate "
Task = "pipeline1a::mkdir('tempdir/testdir', 'tempdir/testdir2') #2 before task_originate "
Task = 'pipeline1a::task_originate'
Task = 'pipeline1a::add_input'
Task = 'pipeline1a::22_to_33'
Task = 'pipeline1a::33_to_44'

184 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

2.10.2 Code

#!/usr/bin/env python
from __future__ import print_function
"""

Demonstrates the new Ruffus syntax in version 2.6
"""

import os
import sys

add grandparent to search path for testing
grandparent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))
sys.path.insert(0, grandparent_dir)

import ruffus
from ruffus import add_inputs, suffix, mkdir, regex, Pipeline, output_from, touch_file
print("\tRuffus Version = ", ruffus.__version__)

#888

imports

#888
import shutil

def touch (outfile):
with open(outfile, "w"):

pass

#888

Tasks

#888
tempdir = "tempdir/"
def task_originate(o):

"""
Makes new files
"""
touch(o)

def task_m_to_1(i, o):
"""
Merges files together
"""
with open(o, "w") as o_file:

for f in sorted(i):
with open(f) as ii:

o_file.write(f +"=" + ii.read() + "; ")

def task_1_to_1(i, o):

2.10. Python Code for: New Object orientated syntax for Ruffus in Version 2.6 185

ruffus Documentation, Release 2.6.3

"""
1 to 1 for transform
"""
with open(o, "w") as o_file:

with open(i) as ii:
o_file.write(i +"+" + ii.read())

DEBUG_do_not_define_tail_task = False
DEBUG_do_not_define_head_task = False

import unittest

#
Returns a fully formed sub pipeline useable as a building block
#
def make_pipeline1(pipeline_name, # Pipelines need to have a unique name

starting_file_names):
test_pipeline = Pipeline(pipeline_name)

We can change the starting files later using
set_input() for transform etc.
or set_output() for originate
But it can be more convenient to just pass this to the function making the pipeline
#
test_pipeline.originate(task_originate, starting_file_names)\

.follows(mkdir(tempdir), mkdir(tempdir + "testdir", tempdir + "testdir2"))\

.posttask(touch_file(tempdir + "testdir/whatever.txt"))
test_pipeline.transform(task_func = task_m_to_1,

name = "add_input",
Lookup Task from function name task_originate()
So long as this is unique in the pipeline
input = task_originate,
filter = regex(r"(.*)"),
add_inputs = add_inputs(tempdir + "testdir/whatever.txt"),
output = r"\1.22")

test_pipeline.transform(task_func = task_1_to_1,
name = "22_to_33",
Lookup Task from Task name
Function name is not unique in the pipeline
input = output_from("add_input"),
filter = suffix(".22"),
output = ".33")

tail_task = test_pipeline.transform(task_func = task_1_to_1,
name = "33_to_44",
Ask Pipeline to lookup Task from Task name
input = test_pipeline["22_to_33"],
filter = suffix(".33"),
output = ".44")

Set the tail task so that users of my sub pipeline can use it as a dependency
without knowing the details of task names
#
Use Task() object directly without having to lookup
test_pipeline.set_tail_tasks([tail_task])

If we try to connect a Pipeline without tail tasks defined, we have to
specify the exact task within the Pipeline.
Otherwise Ruffus will not know which task we mean and throw an exception

186 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

if DEBUG_do_not_define_tail_task:
test_pipeline.set_tail_tasks([])

Set the head task so that users of my sub pipeline send input into it
without knowing the details of task names
test_pipeline.set_head_tasks([test_pipeline[task_originate]])

return test_pipeline

#
Returns a fully formed sub pipeline useable as a building block
#
def make_pipeline2(pipeline_name = "pipeline2"):

test_pipeline2 = Pipeline(pipeline_name)
test_pipeline2.transform(task_func = task_1_to_1,

task name
name = "44_to_55",
placeholder: will be replaced later with set_input()
input = None,
filter = suffix(".44"),
output = ".55")

test_pipeline2.merge(task_func = task_m_to_1,
input = test_pipeline2["44_to_55"],
output = tempdir + "final.output",)

Set head and tail
test_pipeline2.set_tail_tasks([test_pipeline2[task_m_to_1]])
if not DEBUG_do_not_define_head_task:

test_pipeline2.set_head_tasks([test_pipeline2["44_to_55"]])

return test_pipeline2

First two pipelines are created as separate instances by the make_pipeline1 function
pipeline1a = make_pipeline1(pipeline_name = "pipeline1a", starting_file_names = [tempdir + ss for ss in ("a.1", "b.1")])
pipeline1b = make_pipeline1(pipeline_name = "pipeline1b", starting_file_names = [tempdir + ss for ss in ("c.1", "d.1")])

The Third pipeline is a clone of pipeline1b
pipeline1c = pipeline1b.clone(new_name = "pipeline1c")

Set the "originate" files for pipeline1c to ("e.1" and "f.1")
Otherwise they would use the original ("c.1", "d.1")
pipeline1c.set_output(output = [])
pipeline1c.set_output(output = [tempdir + ss for ss in ("e.1", "f.1")])

Join all pipeline1a-c to pipeline2
pipeline2 = make_pipeline2()
pipeline2.set_input(input = [pipeline1a, pipeline1b, pipeline1c])

import ruffus.cmdline as cmdline
parser = cmdline.get_argparse(description='Demonstrates the new Ruffus syntax in version 2.6')

parser.add_argument('--cleanup', "-C",
action="store_true",
help="Cleanup before and after.")

2.10. Python Code for: New Object orientated syntax for Ruffus in Version 2.6 187

ruffus Documentation, Release 2.6.3

options = parser.parse_args()

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

if we are printing only
if not options.just_print and \

not options.flowchart and \
not options.touch_files_only:
cmdline.run (options)
sys.exit()

#
Cleanup beforehand
#
if options.cleanup:

try:
shutil.rmtree(tempdir)

except:
pass

#
Run
#
cmdline.run (options)

#
Cleanup Afterwards
#
if options.cleanup:

try:
shutil.rmtree(tempdir)

except:
pass

2.11 Where I see Ruffus going

These are the future enhancements I would like to see in Ruffus:

• Simpler syntax

– Extremely pared down syntax where strings are interpreted as commands (like gmake) but
with full Ruffus support / string interpolation etc.

– More powerful non-decorator OOP syntax

– More customisation points for your own syntax / database use

• Better support for Computational clusters / larger scale pipelines

– Running jobs out of sequence

– Long running pipeline where input can be added later

188 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

– Restarting failed jobs robustly

– Finding out why jobs fail

– Does Ruffus scale to thousands of parallel jobs. What are the bottlenecks?

• Better displays of progress

– Query which tasks / jobs are being run

– GUI displays

• Dynamic control during pipeline progress

– Turn tasks on and off

– Pause pipelines

– Pause jobs

– Change priorities

• Better handling of data

– Can we read and write from databases instead of files?

– Can we cleanup files but preserve history?

2.12 In up coming release:

2.12.1 Todo: Mention python3.2 multiprocessing import and proxies bug in FAQ

2.12.2 Todo: Refactor Error Messages

When are messages indented? When are messages wrapped / extended across new lines

2.12.3 Todo: More documentation for formatter()

Needs to discuss how to escape. Also in FAQ?

2.12.4 Todo: OOP syntax taking strings

2.12.5 Todo: Extra unit tests

1. @product set_input should take (input, input2...)

2. bioinformatics pipelines (complicated example)

3. output_from and Pipeline names

2.12. In up coming release: 189

ruffus Documentation, Release 2.6.3

2.12.6 Todo: document output_from()

2.12.7 Todo: document new syntax

2.12.8 Todo: Log the progress through the pipeline in a machine parsable format

Standard parsable format for reporting the state of the pipeline enhancement

• Timestamped text file

• Timestamped Database

Unit tests dependeing on topology output:

• Pipeline.clone()

• Whether setup occurs pipeline_run() where target_tasks and forcedtorun_tasks
are in different linked or unlinked pipelines

• pipeline in separate module

• self dependency -> errors

2.12.9 Todo: Check non-reentrant / global variables

1. update_checksum_level_on_tasks(checksum_level) is non reentrant

2.12.10 Todo: Pipeline runs should have tags / names

2.12.11 Todo: either_or: Prevent failed jobs from propagating further

Motivating example:

@transform(prevtask, suffix(".txt"), either_or(".failed", ".succeed"))
def task(input_file, output_files):

succeed_file_name, failed_file_name = output_files
if not run_operation(input_file, succeed_file_name):

touch failed file
with open(failed_file_name, "w") as faile_file:

pass

2.12.12 Todo: (bug fix) pipeline_printout_graph should print inactive tasks

2.12.13 Todo: Mark input strings as non-file names, and add support for dynami-
cally returned parameters

1. Use indicator object.

2. What is a good name? "output_from()", "NOT_FILE_NAME" :-)

3. They will still participate in suffix, formatter and regex replacement

Bernie Pope suggests that we should generalise this:

If any object in the input parameters is a (non-list/tuple) class instance, check (getattr) whether it has
a ruffus_params() function. If it does, call it to obtain a list which is substituted in place. If

190 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

there are string nested within, these will also take part in Ruffus string substitution. Objects with
ruffus_params() always “decay” to the results of the function call

output_from would be a simple wrapper which returns the internal string via ruffus_params()

class output_from (object):
def __init__(self, str):

self.str = str
def ruffus_params(self):

return [self.str]

Returning a list should be like wildcards and should not introduce an unnecessary level of indirection for
output parameters, i.e. suffix(”.txt”) or formatter() / “{basename[0]}” should work.

Check!

2.13 Future Changes to Ruffus

I would appreciated feedback and help on all these issues and where next to take ruffus.

Future Changes are features where we more or less know where we are going and how to get there.

Planned Improvements describes features we would like in Ruffus but where the implementation or
syntax has not yet been (fully) worked out.

If you have suggestions or contributions, please either write to me (ruffus_lib at llew.org.uk) or send a
pull request via the git site.

2.13.1 Todo: Replacements for formatter(), suffix(), regex()

formatter etc. should be self contained objects derived from a single base class with behaviour rather than
empty tags used for dispatching to functions

The design is better fit by and should be switched over to an inheritance scheme

2.13.2 Todo: Allow “extra” parameters to be used in output substitution

Formatter substitution can refer to the original elements in the input and extra parameters (without con-
verting them to strings either). This refers to the original (nested) data structure.

This will allow normal python datatypes to be handed down and slipstreamed into a pipeline more easily.

The syntax would use Ruffus (> version 2.4) formatter:

@transform(..., formatter(), [
"{EXTRAS[0][1][3]}", # EXTRAS
"[INPUTS[1][2]]"],...) # INPUTS

def taskfunc():
pass

EXTRA and INPUTS indicate that we are referring to the input and extra parameters.

These are the full (nested) parameters in all their original form. In the case of the input parameters, this
obvious depends on the decorator, so

2.13. Future Changes to Ruffus 191

https://github.com/bunbun/ruffus

ruffus Documentation, Release 2.6.3

@transform(["a.text", [1, "b.text"]], formatter(), "{INPUTS[0][0]}")
def taskfunc():

pass

would give

job #1
input == "a.text"
output == "a"

job #2
input == [1, "b.text"]
output == 1

The entire string must consist of INPUTS or EXTRAS followed by optionally N levels of square brackets.
i.e. They must match "(INPUTS|EXTRAS)(\[\d+\])+"

No string conversion takes place.

For INPUTS or EXTRAS which have objects with a ruffus_params() function (see Todo item
above), the original object rather than the result of ruffus_params() is forwarded.

2.13.3 Todo: Extra signalling before and after each task and job

@prejob(custom_func)
@postjob(custom_func)
def task():

pass

@prejob / @postjob would be run in the child processes.

2.13.4 Todo: @split / @subdivide returns the actual output created

• overrides (not replaces) wild cards.

• Returns a list, each with output and extra paramters.

• Won’t include extraneous files which were not created in the pipeline but which just happened to match the wild
card

• We should have ruffus_output_params, ruffus_extra_params wrappers for clarity:

@split("a.file", "*.txt")
def split_into_txt_files(input_file, output_files):

output_files = ["a.txt", "b.txt", "c.txt"]
for output_file_name in output_files:

with open(output_file_name, "w") as oo:
pass

return [
ruffus_output("a.file"),
[ruffus_output(["b.file", "c.file"]), ruffus_extras(13, 14)],
]

• Consider yielding?

192 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

Checkpointing

• If checkpoint file is used, the actual files are saved and checked the next time

• If no files are generated, no files are checked the next time...

• The output files do not have to match the wildcard though we can output a warning message if that happens...
This is obviously dangerous because the behavior will change if the pipeline is rerun without using the check-
point file

• What happens if the task function changes?

2.13.5 Todo: New decorators

Todo: @originate

Each (serial) invocation returns lists of output parameters until returns None. (Empty list = continue,
None = break).

Todo: @recombine

Like @collate but automatically regroups jobs which were a result of a previous @subdivide /
@split (even after intervening @transform)

This is the only way job trickling can work without stalling the pipeline: We would know how many jobs
were pending for each @recombine job and which jobs go together.

2.13.6 Todo: Bioinformatics example to end all examples

Uses

• @product

• @subdivide

• @transform

• @collate

• @merge

2.13.7 Todo: Allow the next task to start before all jobs in the previous task have
finished

Jake (Biesinger) calls this Job Trickling!

• A single long running job no longer will hold up the entire pipeline

• Calculates dependencies dynamically at the job level.

• Goal is to have a long running (months) pipeline to which we can keep adding input...

• We can choose between prioritising completion of the entire pipeline for some jobs (depth first) or
trying to complete as many tasks as possible (breadth first)

2.13. Future Changes to Ruffus 193

ruffus Documentation, Release 2.6.3

Converting to per-job rather than per task dependencies

Some decorators prevent per job (rather than per task) dependency calculations, and will call a pipeline
stall until the dependent tasks are completed (the current situation):

• Some types of jobs unavoidably depend on an entire previous task completing:

– add_inputs(), inputs()

– @merge

– @split (implicit @merge)

• @split, @originate produce variable amount of output at runtime and must be completed before the next task can be run.

– Should yield instead of return?

• @collate needs to pattern match all the inputs of a previous task

– Replace @collate with @recombine which “remembers” and reverses the results of a
previous @subdivide or @split

– Jobs need unique job_id tag

– Jobs are assigned (nested) grouping id which accompany them down the pipeline after
@subdivide / @split and are removed after @recombine

– Should have a count of jobs so we always know when an “input slot” is full

• Funny “single file” mode for @transform, @files needs to be regularised so it is a syntactic
(front end) convenience (oddity!) and not plague the inards of ruffus

Breaking change: to force the entirety of the previous task to complete before the next one, use
@follows

Implementation

• “Push” model. Completing jobs “check in” their outputs to “input slots” for all the sucessor jobs.

• When “input slots” are full for any job, it is put on the dispatch queue to be run.

• The priority (depth first or breadth first) can be set here.

• pipeline_run / Pipeline_printout create a task dependency tree structure (from decorator dependen-
cies) (a runtime pipeline object)

• Each task in the pipeline object knows which other tasks wait on it.

• When output is created by a job, it sends messages to (i.e. function calls) all dependent tasks in the pipeline
object with the new output

• Sets of output such as from @split and @subdivide and @originate have a terminating condition and/or
a associated count (# of output)

• Tasks in the pipeline object forward incoming inputs to task input slots (for slots common to all jobs in a task:
@inputs, @add_inputs) or to slots in new jobs in the pipeline object

• When all slots are full in each job, this triggers putting the job parameters onto the job submission queue

• The pipeline object should allow Ruffus to be reentrant?

194 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

2.13.8 Todo: Allow checkpoint files to be moved

Allow checkpoint files to be “rebased” so that moving the working directory of the pipeline does not
invalidate all the files.

We need some sort of path search and replace mechanism which handles conflicts, and probably version-
ing?

2.13.9 Todo: Remove intermediate files

Often large intermediate files are produced in the middle of a pipeline which could be removed. However,
their absence would cause the pipeline to appear out of date. What is the best way to solve this?

In gmake, all intermediate files which are not marked .PRECIOUS are deleted.

We can similar mark out all tasks producing intermediate files so that all their output file can be deleted
using an @intermediate/provisional/transient/temporary/interim/ephemeral
decorator.

The tricky part of the design is how to delete files without disrupting our ability to build the original file
dependency DAG, and hence check which tasks have up-to-date output when the pipeline is run again.

1. We can just work back from upstream/downstream files and ignore the intermediate files as gmake
does. However, the increased power of Ruffus makes this very fragile: In gmake, the DAG is entirely
specified by the specified destination files. In Ruffus, the number of task files is indeterminate, and
can be changed at run time (see @split and @subdivide)

2. We can save the filenames into the checksum file before deleting them

3. We can leave the files in place files but zero out their contents. It is probably best to write a small
magic text value to the file, e.g. “RUFFUS_ZEROED_FILE”, so that we are not confused by real
files of zero size.

In practice (2) and (3) should be combined for safety.

1. pipeline_cleaunup() will print out a list of files to be zeroed, or a list of commands to zero files or
just do it for you

2. When rerunning, we can force files to be recreated using pipeline_run(...,
forcedtorun_tasks,...), and Ruffus will track back through lists of dependencies
and recreate all “zeroed” files.

2.14 Planned Improvements to Ruffus

• @split needs to be able to specify at run time the number of resulting jobs without using wild cards

• legacy support for wild cards and file names.

2.14.1 Planned: Running python code (task functions) transparently on remote
cluster nodes

Wait until next release.

Will bump Ruffus to v.3.0 if can run python jobs transparently on a cluster!

abstract out task.run_pooled_job_without_exceptions() as a function which can be sup-
plied to pipeline_run

2.14. Planned Improvements to Ruffus 195

ruffus Documentation, Release 2.6.3

Common “job” interface:

• marshalled arguments

• marshalled function

• submission timestamp

Returns

• completion timestamp

• returned values

• exception

1. Full version use libpythongrid? * http://zguide.zeromq.org/page:all * Christian Wid-
mer <ckwidmer@gmail.com> * Cheng Soon Ong <chengsoon.ong@unimelb.edu.au> *
https://code.google.com/p/pythongrid/source/browse/#git%2Fpythongrid * Probably not good
to base Ruffus entirely on libpythongrid to minimise dependencies, the use of sophisticated
configuration policies etc.

2. Start with light-weight file-based protocol * specify where the scripts should live * use drmaa to start
jobs * have executable ruffus module which knows how to load deserialise (unmarshall) function /
parameters from disk. This would be what drmaa starts up, given the marshalled data as an argument
* time stamp * “heart beat” to check that the job is still running

3. Next step: socket-based protocol * use specified master port in ruffus script * start remote processes
using drmaa * child receives marshalled data and the address::port in the ruffus script (head node)
to initiate hand shake or die * process recycling: run successive jobs on the same remote process
for reduced overhead, until exceeds max number of jobs on the same process, min/max time on the
same process * resubmit if die (Don’t do sophisticated stuff like libpythongrid).

2.14.2 Planned: Custom parameter generator

Request on mailing list

I’ve often wished that I could use an arbitrary function to process the input filepath
instead of just a regex.

def f(inputs, outputs, extra_param1, extra_param2):
do something to generate parameters
return new_output_param, new_extra_param1, new_extra_param2

now f() can be used inside a Ruffus decorator to generate the outputs from inputs, instead of
being forced to use a regex for the job.

Cheers, Bernie.

Leverages built-in Ruffus functionality. Don’t have to write entire parameter generation from scratch.

• Gets passed an iterator where you can do a for loop to get input parameters / a flattened list of files

• Other parameters are forwarded as is

• The duty of the function is to yield input, output, extra parameters

Simple to do but how do we prevent this from being a job-trickling barrier?

Postpone until we have an initial design for job-trickling: Ruffus v.4 ;-(

196 Chapter 2. Overview:

http://zguide.zeromq.org/page:all
mailto:ckwidmer@gmail.com
mailto:chengsoon.ong@unimelb.edu.au
https://code.google.com/p/pythongrid/source/browse/#git%2Fpythongrid

ruffus Documentation, Release 2.6.3

2.14.3 Planned: Ruffus GUI interface.

Desktop (PyQT or web-based solution?) I’d love to see an svg pipeline picture that I could actually
interact with

2.14.4 Planned: @retry_on_error(NUM_OF_RETRIES)

2.14.5 Planned: Clean up

The plan is to store the files and directories created via a standard interface.

The placeholders for this are a function call register_cleanup.

Jobs can specify the files they created and which need to be deleted by returning a list of file names from
the job function.

So:

raise Exception = Error

return False = halt pipeline now

return string / list of strings = cleanup files/directories later

return anything else = ignored

The cleanup file/directory store interface can be connected to a text file or a database.

The cleanup function would look like this:

pipeline_cleanup(cleanup_log("../cleanup.log"), [instance ="october19th"])
pipeline_cleanup(cleanup_msql_db("user", "password", "hash_record_table"))

The parameters for where and how to store the list of created files could be similarly passed to pipeline_run
as an extra parameter:

pipeline_run(cleanup_log("../cleanup.log"), [instance ="october19th"])
pipeline_run(cleanup_msql_db("user", "password", "hash_record_table"))

where cleanup_log and cleanup_msql_db are classes which have functions for

1. storing file

2. retrieving file

3. clearing entries

• Files would be deleted in reverse order, and directories after files.

• By default, only empty directories would be removed.

But this could be changed with a --forced_remove_dir option

• An --remove_empty_parent_directories option would be supported by
os.removedirs(path).

2.14. Planned Improvements to Ruffus 197

http://docs.python.org/library/os.html#os.removedirs

ruffus Documentation, Release 2.6.3

2.15 Implementation Tips

2.15.1 Release

• Change ruffus_version.py

• Rebuild pdf and copy it to doc/static_data

cd doc make latexpdf cp _build/latex/ruffus.pdf static_data

• Rebuild documentation:

make htmlsync

• tag git with, for example:

git tag -a v2.6 -m "Version 2.6"

• Upload to pypi:

python setup.py sdist --format=gztar upload

• Upload to repository:

git push googlecode
git push

2.15.2 blogger

.article-content h2 {color: #ad3a2b}

.article-content h3 {color: #0100b4}
#header .header-bar .title h1
{
background-image: url('http://www.ruffus.org.uk/_static/small_logo.png');
background-repeat: no-repeat;
background-position: left;
}

2.15.3 dbdict.py

This is an sqlite backed dictionary originally written by Jacob Sondergaard and contributed by Jake
Biesinger who added automatic pickling of python objects.

The pickling code was refactored out by Leo Goodstadt into separate functions as part of the preparation
to make Ruffus python3 ready.

Python original saved (pickled) objects as 7 bit ASCII strings. Later formats (protocol = -1 is the latest
format) uses 8 bit strings and are rather more efficient.

These then need to be saved as BLOBs to sqlite3 rather than normal strings. We can signal this by
wrapping the pickled string in a object providing a “buffer interface”. This is buffer in python2.6/2.7
and memoryview in python3.

http://bugs.python.org/issue7723 suggests there is no portable python2/3 way to write blobs to Sqlite
without these two incompatible wrappers. This would require conditional compilation:

198 Chapter 2. Overview:

http://bugs.python.org/issue7723

ruffus Documentation, Release 2.6.3

if sys.hexversion >= 0x03000000:
value = memoryview(pickle.dumps(value, protocol = -1))

else:
value = buffer(pickle.dumps(value, protocol = -1))

Despite the discussion on the bug report, sqlite3.Binary seems to work. We shall see if this is portable to
python3.

2.15.4 how to write new decorators

New placeholder class. E.g. for @new_deco

class new_deco(task_decorator):
pass

Add to list of action names and ids:

action_names = ["unspecified",
...
"task_new_deco",

action_task_new_deco = 15

Add function:

def task_transform (self, orig_args):

Add documentation to:

• decorators/NEW_DECORATOR.rst

• decorators/decorators.rst

• _templates/layout.html

• manual

2.16 Implementation notes

N.B. Remember to cite Jake Biesinger and see if he is interested to be a co-author if we ever resubmit the drastically
changed version... He contributed checkpointing, travis and tox etc.

2.16.1 Ctrl-C handling

Pressing Ctrl-C left dangling process in Ruffus 2.4 because KeyboardInterrupt does not play nice
with python multiprocessing.Pool See http://stackoverflow.com/questions/1408356/keyboard-
interrupts-with-pythons-multiprocessing-pool/1408476#1408476

http://bryceboe.com/2012/02/14/python-multiprocessing-pool-and-keyboardinterrupt-revisited/ provides
a reimplementation of Pool which however only works when you have a fixed number of jobs which
should then run in parallel to completion. Ruffus is considerably more complicated because we have a
variable number of jobs completing and being submitted into the job queue at any one time. Think of
tasks stalling waiting for the dependent tasks to complete and then all the jobs of the task being released
onto the queue

The solution is

2.16. Implementation notes 199

http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool/1408476#1408476
http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool/1408476#1408476
http://bryceboe.com/2012/02/14/python-multiprocessing-pool-and-keyboardinterrupt-revisited/

ruffus Documentation, Release 2.6.3

1. Use a timeout parameter when using IMapIterator.next(timeout=None) to iterate
through pool.imap_unordered because only timed condition s can be interruptible by
signals...!!

2. This involves rewriting the for loop manually as a while loop

3. We use a timeout of 99999999, i.e. 3 years, which should be enough for any job to complete...

4. Googling after the fact, it looks like the galaxy guys (cool dudes or what) have written similar code

5. next() for normal iterators do not take timeout as an extra parameter so we have to wrap next
in a conditional :-(. The galaxy guys do a shim around next() but that is as much obsfucation as
a simple if...

6. After jobs are interrupted by a signal, we rethrow with our own exception because we want some-
thing that inherits from Exception unlike KeyboardInterrupt

7. When a signal happens, we need to immediately stop feed_job_params_to_process_pool()
from sending more parameters into the job queue (parameter_q) We use a proxy to a
multiprocessing.Event (via syncmanager.Event()). When death_event is set,
all further processing stops...

8. We also signal that all jobs should finish by putting all_tasks_complete() into
parameter_q but only death_event prevents jobs already in the queue from going through

9. Ater signalling, some of the child processes appear to be dead by the time we start cleaning up.
pool.terminate() sometimes tries and fails to re-connect to the the death_event proxy via
sockets and throws an exception. We should really figure out a better solution but in the meantime
wrapping it in a try / except allows a clean exit.

10. If a vanilla exception is raised without multiprocessing running, we still need to first save the ex-
ception in job_errors (even if it is just one) before cleaning up, because the cleaning up process
may lead to further (ignored) exceptions which would overwrite the current exception when we need
to rethrow it

Exceptions thrown in the middle of a multiprocessing / multithreading job appear to be handled gracefully.

For drmaa jobs, qdel may still be necessary.

2.16.2 Python3 compatability

Required extensive changes especially in unit test code.

Changes:

1. sort in python3 does not order mixed types, i.e. int(), list() and str() are incommensurate

• In task.get_output_files (...), sort after conversion to string

sorted(self.output_filenames, key = lambda x: str(x))

• In file_name_parameters.py: collate_param_factory (...), sort after
conversion to string, then groupby without string conversion. This is because we can’t guar-
antee that two different objects do not have the same string representation. But groupby
requires that similar things are adjacent...

In other words, groupby is a refinement of sorted

for output_extra_params, grouped_params in groupby(sorted(io_params_iter, key = get_output_extras_str), key = get_output_extras):
pass

200 Chapter 2. Overview:

https://galaxy-dist.readthedocs.org/en/latest/_modules/galaxy/objectstore/s3_multipart_upload.html
http://en.wikipedia.org/wiki/Shim_(computing)

ruffus Documentation, Release 2.6.3

2. print() is a function

from __future__ import print_function

3. items() only returns a list in python2. Rewrite dict.iteritems()whenever this might cause
a performance bottleneck

4. zip and map return iterators. Conditionally import in python2

import sys
if sys.hexversion < 0x03000000:

from future_builtins import zip, map

5. cPickle->pickle CStringIO->io need to be conditionally imported

try:
import StringIO as io

except:
import io as io

6. map code can be changed to list comprehensions. Use 2to3 to do heavy lifting

7. All normal strings are unicode in python3. Have to use bytes to support 8-bit char arrays. Nor-
mally, this means that str “just works”. However, to provide special handling of both 8-bit and
unicode strings in python2, we often need to check for isinstance(xxx, basestring).

We need to conditionally define:

if sys.hexversion >= 0x03000000:
everything is unicode in python3
path_str_type = str

else:
path_str_type = basestring

further down...
if isinstance(compiled_regex, path_str_type):

pass

2.16.3 Refactoring: parameter handling

Though the code is still split in a not very sensible way between ruffus_utility.py, file_name_parameters.py and task.py,
some rationalisation has taken place, and comments added so further refactoring can be made more
easily.

Common code for:

file_name_parameters.split_ex_param_factory()
file_name_parameters.transform_param_factory()
file_name_parameters.collate_param_factory()

has been moved to file_name_parameters.py.yield_io_params_per_job()

unit tests added to test_file_name_parameters.py and test_ruffus_utility.py

2.16.4 formatter

get_all_paths_components(paths, regex_str) in ruffus_utility.py

2.16. Implementation notes 201

ruffus Documentation, Release 2.6.3

Input files names are first squished into a flat list of files. get_all_paths_components() returns
both the regular expression matches and the break down of the path.

In case of name clashes, the classes with higher priority override:

1. Captures by name

2. Captures by index

3. Path components: ‘ext’ = extension with dot ‘basename’ = file name without extension
‘path’ = path before basename, not ending with slash ‘subdir’ = list of directories
starting with the most nested and ending with the root (if normalised) ‘subpath’ = list
of ‘path’ with successive directories removed starting with the most nested and ending
with the root (if normalised)

E.g. name = ’/a/b/c/sample1.bam’, formatter=r"(.*)(?P<id>\d+)\.(.+)")
returns:

0: '/a/b/c/sample1.bam', // Entire match captured by index
1: '/a/b/c/sample', // captured by index
2: 'bam', // captured by index
'id': '1' // captured by name
'ext': '.bam',
'subdir': ['c', 'b', 'a', '/'],
'subpath': ['/a/b/c', '/a/b', '/a', '/'],
'path': '/a/b/c',
'basename': 'sample1',

The code is in ruffus_utility.py:

results = get_all_paths_components(paths, regex_str)
string.format(results[2])

All the magic is hidden inside black boxes filename_transform classes:

class t_suffix_filename_transform(t_filename_transform):
class t_regex_filename_transform(t_filename_transform):
class t_format_filename_transform(t_filename_transform):

formatter(): regex() and suffix()

The previous behaviour with regex() where mismatches fail even if no substitution is made is retained by
the use of re.subn(). This is a corner case but I didn’t want user code to break

filter on ".txt"
input_filenames = ["a.wrong", "b.txt"]
regex("(.txt)$")

fails, no substitution possible
r"\1"

fails anyway even through regular expression matches not referenced...
r"output.filename"

2.16.5 @product()

• Use combinatoric generators from itertools and keep that naming scheme

202 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

• Put all new generators in an combinatorics submodule namespace to avoid breaking user code.
(They can imported if necessary.)

• test code in test/test_combinatorics.py

• The itertools.product(repeat) parameter doesn’t make sense for Ruffus and will not be
used

• Flexible number of pairs of task / glob / file names + formatter()

• Only formatter([OPTIONAl_REGEX]) provides the necessary flexibility to construct the out-
put so we won’t bother with suffix and regex

• Similar to @transform but with extra level of nested-ness

Retain same code for @product and @transform by adding an additional level of indirection:

• generator wrap around get_strings_in_nested_sequence to convert nested input pa-
rameters either to a single flat list of file names or to nested lists of file names

file_name_parameters.input_param_to_file_name_list (input_params)
file_name_parameters.list_input_param_to_file_name_list (input_params)

• t_file_names_transform class which stores a list of regular expressions, one for each
formatter() object corresponding to a single set of input parameters

t_formatter_file_names_transform
t_nested_formatter_file_names_transform

• string substitution functions which will apply a list of formatter changes

ruffus.utility.t_formatter_replace()
ruffus.utility.t_nested_formatter_replace()

• ruffus_uilility.swap_doubly_nested_order() makes the syntax / implemen-
tation very orthogonal

2.16.6 @permutations(...), @combinations(...), @combinations_with_replacement(...)

Similar to @product extra level of nested-ness is self versus self

Retain same code for @product

• forward to a sinble file_name_parameters.combinatorics_param_factory()

• use combinatorics_type to dispatch to combinatorics.permutations,
combinatorics.combinations and combinatorics.combinations_with_replacement

• use list_input_param_to_file_name_list from
file_name_parameters.product_param_factory()

2.16.7 drmaa alternatives

Alternative, non-drmaa polling code at

https://github.com/bjpop/rubra/blob/master/rubra/cluster_job.py

2.16. Implementation notes 203

https://github.com/bjpop/rubra/blob/master/rubra/cluster_job.py

ruffus Documentation, Release 2.6.3

2.16.8 Task completion monitoring

How easy is it to abstract out the database?

• The database is Jacob Sondergaard’s dbdict which is a nosql / key-value store wrapper around sqlite

job_history = dbdict.open(RUFFUS_HISTORY_FILE, picklevalues=True)

• The key is the output file name, so it is important not to confuse Ruffus by having different tasks
generate the same output file!

• Is it possible to abstract this so that jobs get timestamped as well?

• If we should ever want to abstract out dbdict, we need to have a similar key-value store class, and
make sure that a single instance of dbdict is used through pipeline_run which is passed up
and down the function call chain. dbdict would then be drop-in replaceable by our custom (e.g.
flat-file-based) dbdict alternative.

To peek into the database:

$ sqlite3 .ruffus_history.sqlite
sqlite> .tables
data
sqlite> .schema data
CREATE TABLE data (key PRIMARY KEY,value);
sqlite> select key from data order by key;

Can we query the database, get Job history / stats?

Yes, if we write a function to read and dump the entire database but this is only useful with timestamps
and task names. See below

What are the run time performance implications?

Should be fast: a single db connection is created and used inside pipeline_run,
pipeline_printout, pipeline_printout_graph

Avoid pauses between tasks

Allows Ruffus to avoid adding an extra 1 second pause between tasks to guard against file systems with
low timestamp granularity.

• If the local file time looks to be in sync with the underlying file system, saved system time is used
instead of file timestamps

2.16.9 @mkdir(...),

• mkdir continues to work seamlessly inside @follows but also as its own decorator @mkdir due to the
original happy orthogonal design

• fixed bug in checking so that Ruffus does’t blow up if non strings are in the output (number...)

204 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

• note: adding the decorator to a previously undecorated function might have unintended consequences. The
undecorated function turns into a zombie.

• fixed ugly bug in pipeline_printout for printing single line output

• fixed description and printout indent

2.16.10 Parameter handling

Current design

Parameters in Ruffus v 2.x are obtained using a “pull” model.

Each task has its self.param_generator_func() This is an iterator function which yields param and
descriptive_param per iteration:

for param, descriptive_param in self.param_generator_func(runtime_data):
pass

``param`` and ``descriptive_param`` are basically the same except that globs are not expanded in ``descriptive_param`` because
they are used for display.

The iterator functions have all the state they need to generate their input, output and extra parameters (only
runtime_data) is added at run time. These closures are generated as nested functions inside “factory”
functions defined in file_name_parameters.py

Each task type has its own factory function. For example:

args_param_factory (orig_args)
files_param_factory (input_files_task_globs, flatten_input, do_not_expand_single_job_tasks, output_extras)
split_param_factory (input_files_task_globs, output_files_task_globs, *extra_params)
merge_param_factory (input_files_task_globs, output_param, *extra_params)
originate_param_factory (list_output_files_task_globs, extras)

The following factory files delegate most of their work to yield_io_params_per_job:

to support:

• inputs(), add_inputs() input parameter supplementing

• extra inputs, outputs, extra parameter replacement with suffix(), regex() and
formatter

collate_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
transform_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
combinatorics_param_factory (input_files_task_globs, flatten_input, combinatorics_type, k_tuple, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)
subdivide_param_factory (input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_files_task_globs, *extra_specs)
product_param_factory (list_input_files_task_globs, flatten_input, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, *extra_specs)

yield_io_params_per_job (input_params, file_names_transform, extra_input_files_task_globs, replace_inputs, output_pattern, extra_specs, runtime_data, iterator, expand_globs_in_output = False):

1. The first thing they do is to get a list of input parameters, either directly, or by expanding
globs or by query upstream tasks:

file_names_from_tasks_globs(files_task_globs, runtime_data, do_not_expand_single_job_tasks = True_if_split_or_merge)

Note: True_if_split_or_merge is a wierd parameter which directly

2.16. Implementation notes 205

ruffus Documentation, Release 2.6.3

queries the upstream dependency for its output files if it is a single task...

This is legacy code. Probably should be refactored out of existence...

2. They then convert the input parameters to a flattened list of file names (passing through
unchanged the original input parameters structure)

input_param_to_file_name_list()
combinatorics and product call:
list_input_param_to_file_name_list()

This is done at the iterator level because the combinatorics decorators do not have
just a list of input parameters (They have combinations, permutations, products
of input parameters etc) but a list of lists of input parameters.

transform, collate, subdivide => list of strings. combinatorics / product => list of
lists of strings

3. yield_io_params_per_job yields pairs of param sets by

• Replacing or supplementing input parameters for the indicator objects
inputs() and add_inputs()

• Expanding extra parameters

• Expanding output parameters (with or without expanding globs)

In each case:

• If these contains objects which look like strings, we do regular expression /
file component substitution

• If they contain tasks, these are queries for output files

Note: This should be changed:

If the flattened list of input file names is empty, ie. if the input parameters contain
just other stuff, then the entire parameter is ignored.

Handling file names

All strings in input (or output parameters) are treated as file names unless they are wrapped with
output_from in which case they are Task, Pipeline or function names.

A list of strings for ready for substitution to output parameters is obtained from the
ruffus_utility.get_strings_in_flattened_sequence()

This is called from:

file_name_parameters

1. Either to check that input files exist: check_input_files_exist()
needs_update_check_directory_missing()
needs_update_check_exist() needs_update_check_modify_time()

2. Or to generate parameters from the various param factories

product_param_factory() transform_param_factory()
collate_param_factory() combinatorics_param_factory()
subdivide_param_factory()

206 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

These first call file_names_from_tasks_globs() to get the input parame-
ters, then pass a flattened list of strings to yield_io_params_per_job()

-> file_names_from_tasks_globs() ->
yield_io_params_per_job(input_param_to_file_name_list()
/ list_input_param_to_file_name_list())

task

3. to obtain a list of file names to touch

job_wrapper_io_files

4. to make directories

job_wrapper_mkdir

5. update / remove files in job_history if job succeeded or failed

pipeline_run

Refactor to handle input parameter objects with ruffus_params() functions

We want to expand objects with ruffus_params only when doing output parameter substitution, i.e. Case
(2) above. They are not file names: cases (1), (3), (4), (5).

Therefore: Expand in file_names_from_tasks_globs() which also handles inputs() and
add_inputs and @split outputs.

Refactor to handle formatter() replacement with “{EXTRAS[0][1][3]}” and “[INPUTS[1][2]]”

Non-recursive Substitution in all:

construct new list where each item is replaced referring to the original and then assign

extra_inputs() “[INPUTS[1][2]]” refers to the original input output / extras “[INPUTS[1][2]]”
refers to substituted input

In addition to the flattened input paramters, we need to pass in the unflattened input and extra parameters

In file_name_parameters.py.: yield_io_params_per_job

From: .. code-block:: python

extra_inputs = extra_input_files_task_globs.file_names_transformed
(filenames, file_names_transform) extra_params = tuple(
file_names_transform.substitute(filenames, p) for p in extra_specs)
output_pattern_transformed = output_pattern.file_names_transformed
(filenames, file_names_transform) output_param =
file_names_transform.substitute_output_files(filenames, output_pattern)

To: .. code-block:: python

extra_inputs = extra_input_files_task_globs.file_names_transformed
(orig_input_param, extra_specs, filenames, file_names_transform) ex-
tra_params = tuple(file_names_transform.substitute(input_param, ex-
tra_specs, filenames, p) for p in extra_specs) output_pattern_transformed
= output_pattern.file_names_transformed (input_param, ex-
tra_specs, filenames, file_names_transform) output_param =
file_names_transform.substitute_output_files(input_param, extra_specs, filenames,
output_pattern)

2.16. Implementation notes 207

ruffus Documentation, Release 2.6.3

In other words, we need two extra parameters for inputs and extras

class t_file_names_transform(object):
def substitute (self, input_param, extra_param, starting_file_names, pattern):

pass
def substitute_output_files (self, input_param, extra_param, starting_file_names, pattern):

pass

class t_params_tasks_globs_run_time_data(object):
def file_names_transformed (self, input_param, extra_param, filenames, file_names_transform):

pass

Refactor to handle alternative outputs with either_or(...,...)

• what happens to get_outputs or checkpointing when the job completes but the output files are not made?

• either_or matches

– the only alternative to have all files existing

– the alternative with the most recent file

• either_or behaves as list() in file_name_parameters.py. : file_names_from_tasks_globs

• Handled to check that input files exist:

check_input_files_exist() needs_update_check_directory_missing()
needs_update_check_exist() needs_update_check_modify_time()

• Handled to update / remove files in job_history if job succeeded or failed

• Only first either_or is used to obtain list of file names to touch

task.job_wrapper_io_files

• Only first either_or is used to obtain list of file names to make directories

job_wrapper_mkdir

• What happens in task.get_output_files()?

2.16.11 Add Object Orientated interface

Passed Unit tests

1. Refactored to remove unused “flattened” code paths / parameters

2. Prefix all attributes for Task into underscore so that help(Task) is not overloaded with details

3. Named parameters

• parse named parameters in order filling in from unnamed

• save parameters in dict Task.parsed_args

• call setup_task_func() afterwards which knows how to setup:

– poor man’s OOP but

– allows type to be changed after constructor: Because can’t guarantee that @transform
@merge is the first Ruffus decorator to be encountered.

208 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

• setup_task_func() is called for every task before pipeline_xxx()

4. Much more informative messages for errors when parsing decorator arguments

5. Pipeline decorator methods renamed to decorator_xxx as in decorator_follows

6. Task.get_task_name() * rename to Task.get_display_name() * distinguish between decorator
and OO interface

7. Rename _task to Task

8. Identifying tasks from t_job_result:

• job results do not contain references to Task so that it can be marshalled more easily

• we need to look up task at job completion

• use _node_index from graph.py so we have always a unique identifier for each Task

9. Parse arguments using ruffus_utility.parse_task_arguments

• Reveals full hackiness and inconsistency between add_inputs and inputs. The latter only takes
a single argument. Each of the elements of the former gets added along side the existing inputs.

10. Add Pipeline class * Create global called "main" (accessed by Pipeline.pipelines[”main”])

11. Task name lookup

• Task names are unique (Otherwise Ruffus will complain at Task creation)

• Can also lookup by fully qualified or unqualified function name but these can be ambiguous

• Ambiguous lookups give a list of tasks only so we can have nice diagnostic messages ... UI trumps
clean design

12. Look up strings across pipelines #. Is pipeline name qualified? Check that #. Check default (current) pipeline
#. Check if pipeline name. In which case returns all tail functions #. Check all pipelines

• Will blow up at any instance of ambiguity in any particular pipeline

• Will blow up at any instance of ambiguity across pipelines

• Note that mis-spellings will cause problems but if this were c++, I would enforce stricter checking

13. Look up functions across pipelines * Try current pipeline first, then all pipelines * Will blow up at any instance
of ambiguity in any particular pipeline * Will blow up at any instance of ambiguity across pipelines (if not in
current pipeline)

14. @mkdir, @follows(mkdir)

15. Pipeline.get_head_tasks(self) (including tasks with mkdir())

16. Pipeline.get_tail_tasks(self)

17. Pipeline._complete_task_setup() which follows chain of dependencies for each task in a pipeline

Pipeline and Task creation

• Share code as far as possible between decorator and OOP syntax

• Cannot use textbook OOP inheritance hierarchy easily because @decorators are not necessarily given in order.

Pipeline.transform
_do_create_task_by_OOP()

@transform

2.16. Implementation notes 209

ruffus Documentation, Release 2.6.3

Pipeline._create_task()
task._decorator_transform

task._prepare_transform()
self.setup_task_func = self._transform_setup
parse_task_arguments

Pipeline.run
pipeline._complete_task_setup()

walk up ancestors of all task and call setup_task_func
unprocessed_tasks = Pipeline.tasks
while len(unprocessed_tasks):

ancestral_tasks = setup_task_func()
if not already processed:

unprocessed_tasks.append(ancestral_tasks)

Call _complete_task_setup() for all the pipelines of each task

Connecting Task into a DAG

task._complete_setup()
task._remove_all_parents()
task._deferred_connect_parents()
task._setup_task_func()

task._handle_tasks_globs_in_inputs()
task._connect_parents()

re-lookup task from names in current pipeline so that pipeline.clone() works

• Task dependencies are normally deferred and saved to Task.deferred_follow_params

• If Task dependencies call for a new Task (follows/follows(mkdir)), this takes place imme-
diately

• The parameters in Task.deferred_follow_params are updated with the created Taskwhen
this happens

• Task._prepare_preceding_mkdir() has a defer flag to prevent it from updating
Task.deferred_follow_params when it is called to resolve deferred dependencies from
Task._connect_parents(). Otherwise we will have two copies of each deferred depen-
dency...

• Task.deferred_follow_params must be deep-copied otherwise cloned pipelines will inter-
fere with each other when dependencies are resolved...

2.17 FAQ

2.17.1 Citations

Q. How should Ruffus be cited in academic publications?

The official publication describing the original version of Ruffus is:

Leo Goodstadt (2010) : Ruffus: a lightweight Python library for computational pipelines.
Bioinformatics 26(21): 2778-2779

210 Chapter 2. Overview:

http://bioinformatics.oxfordjournals.org/content/early/2010/09/16/bioinformatics.btq524

ruffus Documentation, Release 2.6.3

2.17.2 Good practices

Q. What is the best way of keeping my data and workings separate?

It is good practice to run your pipeline in a temporary, “working” directory away from your original data.

The first step of your pipeline might be to make softlinks to your original data in your working directory.
This is example (relatively paranoid) code to do just this:

def re_symlink (input_file, soft_link_name, logger, logging_mutex):
"""
Helper function: relinks soft symbolic link if necessary
"""
Guard agains soft linking to oneself: Disastrous consequences of deleting the original files!!
if input_file == soft_link_name:

logger.debug("Warning: No symbolic link made. You are using the original data directory as the working directory.")
return

Soft link already exists: delete for relink?
if os.path.lexists(soft_link_name):

do not delete or overwrite real (non-soft link) file
if not os.path.islink(soft_link_name):

raise Exception("%s exists and is not a link" % soft_link_name)
try:

os.unlink(soft_link_name)
except:

with logging_mutex:
logger.debug("Can't unlink %s" % (soft_link_name))

with logging_mutex:
logger.debug("os.symlink(%s, %s)" % (input_file, soft_link_name))

#
symbolic link relative to original directory so that the entire path
can be moved around with breaking everything
#
os.symlink(os.path.relpath(os.path.abspath(input_file),

os.path.abspath(os.path.dirname(soft_link_name))), soft_link_name)

#
First task should soft link data to working directory
#
@jobs_limit(1)
@mkdir(options.working_dir)
@transform(input_files,

formatter(),
move to working directory
os.path.join(options.working_dir, "{basename[0]}{ext[0]}"),
logger, logging_mutex

)
def soft_link_inputs_to_working_directory (input_file, soft_link_name, logger, logging_mutex):

"""
Make soft link in working directory
"""
with logging_mutex:

logger.info("Linking files %(input_file)s -> %(soft_link_name)s\n" % locals())
re_symlink(input_file, soft_link_name, logger, logging_mutex)

2.17. FAQ 211

ruffus Documentation, Release 2.6.3

Q. What is the best way of handling data in file pairs (or triplets etc.)

In Bioinformatics, DNA data often consists of only the nucleotide sequence at the two ends of larger
fragments. The paired_end or mate pair data frequently consists of of file pairs with conveniently related
names such as “.R1.fastq” and “.R2.fastq”.

At some point in data pipeline, these file pairs or triplets must find each other and be analysed in the same
job.

Provided these file pairs or triplets are named consistently, an easiest way to regroup them is to use the
Ruffus @collate decorator. For example:

@collate(original_data_files,

match file name up to the "R1.fastq.gz"
formatter("([^/]+)R[12].fastq.gz$"),

Create output parameter supplied to next task
"{path[0]}/{1[0]}.sam",
logger, logger_mutex)

def handle_paired_end(input_files, output_paired_files, logger, logger_mutex):
check that we really have a pair of two files not an orphaned singleton
if len(input_files) != 2:

raise Exception("One of read pairs %s missing" % (input_files,))

do stuff here

This (incomplete, untested) example code shows what this would look like in vivo.

2.17.3 General

Q. Ruffus won’t create dependency graphs

A. You need to have installed dot from Graphviz to produce pretty flowcharts likes this:

Q. Ruffus seems to be hanging in the same place

A. If ruffus is interrupted, for example, by a Ctrl-C, you will often find the following lines of code high-
lighted:

File "build/bdist.linux-x86_64/egg/ruffus/task.py", line 1904, in pipeline_run
File "build/bdist.linux-x86_64/egg/ruffus/task.py", line 1380, in run_all_jobs_in_task
File "/xxxx/python2.6/multiprocessing/pool.py", line 507, in next
self._cond.wait(timeout)

File "/xxxxx/python2.6/threading.py", line 237, in wait
waiter.acquire()

This is not where ruffus is hanging but the boundary between the main programme process and the sub-
processes which run ruffus jobs in parallel.

212 Chapter 2. Overview:

http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.ilmn
http://en.wikipedia.org/wiki/Shotgun_sequencing#Whole_genome_shotgun_sequencing
http://www.graphviz.org/

ruffus Documentation, Release 2.6.3

This is naturally where broken execution threads get washed up onto.

Q. Regular expression substitutions don’t work

A. If you are using the special regular expression forms "\1", "\2" etc. to refer to matching groups,
remember to ‘escape’ the subsitution pattern string. The best option is to use ‘raw’ python strings. For
example:

r"\1_substitutes\2correctly\3four\4times"

Ruffus will throw an exception if it sees an unescaped "\1" or "\2" in a file name.

Q. How to force a pipeline to appear up to date?

I have made a trivial modification to one of my data files and now Ruffus wants to rerun my month long
pipeline. How can I convince Ruffus that everything is fine and to leave things as they are?

The standard way to do what you are trying to do is to touch all the files downstream... That way the
modification times of your analysis files would postdate your existing files. You can do this manually but
Ruffus also provides direct support:

pipeline_run (touch_files_only = True)

pipeline_run will run your script normally stepping over up-to-date tasks and starting with jobs which
look out of date. However, after that, none of your pipeline task functions will be called, instead, each
non-up-to-date file is touch-ed in turn so that the file modification dates follow on successively.

See the documentation for pipeline_run()

It is even simpler if you are using the new Ruffus.cmdline support from version 2.4. You can just type

your script --touch_files_only [--other_options_of_your_own_etc]

See command line documentation.

Q. How can I use my own decorators with Ruffus?

(Thanks to Radhouane Aniba for contributing to this answer.)

1. With care! If the following two points are observed:

1. Use @wraps from functools or Michele Simionato’s decorator module

These will automatically forward attributes from the task function correctly:

• __name__ and __module__ is used to identify functions uniquely in a Ruffus pipeline, and

• pipeline_task is used to hold per task data

2. Always call Ruffus decorators first before your own decorators.

Otherwise, your decorator will be ignored.

So this works:

2.17. FAQ 213

http://docs.python.org/library/re.html
https://en.wikipedia.org/wiki/Touch_(Unix)

ruffus Documentation, Release 2.6.3

@follows(prev_task)
@custom_decorator(something)
def test():

pass

This is a bit futile

ignore @custom_decorator
@custom_decorator(something)
@follows(prev_task)
def test():

pass

This order dependency is an unfortunate quirk of how python decorators work. The last (rather futile)
piece of code is equivalent to:

test = custom_decorator(something)(ruffus.follows(prev_task)(test))

Unfortunately, Ruffus has no idea that someone else (custom_decorator) is also modifying the
test() function after it (ruffus.follows) has had its go.

Example decorator:

Let us look at a decorator to time jobs:

import sys, time
def time_func_call(func, stream, *args, **kwargs):

"""prints elapsed time to standard out, or any other file-like object with a .write() method.
"""

start = time.time()
Run the decorated function.
ret = func(*args, **kwargs)
Stop the timer.
end = time.time()
elapsed = end - start
stream.write("{} took {} seconds\n".format(func.__name__, elapsed))
return ret

from ruffus import *
import sys
import time

@time_job(sys.stderr)
def first_task():

print "First task"

@follows(first_task)
@time_job(sys.stderr)
def second_task():

print "Second task"

@follows(second_task)
@time_job(sys.stderr)
def final_task():

print "Final task"

214 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

pipeline_run()

What would @time_job look like?

1. Using functools @wraps

import functools
def time_job(stream=sys.stdout):

def actual_time_job(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):

return time_func_call(func, stream, *args, **kwargs)
return wrapper

return actual_time_job

2. Using Michele Simionato’s decorator module

import decorator
def time_job(stream=sys.stdout):

def time_job(func, *args, **kwargs):
return time_func_call(func, stream, *args, **kwargs)

return decorator.decorator(time_job)

2. By hand, using a callable object

class time_job(object):
def __init__(self, stream=sys.stdout):

self.stream = stream
def __call__(self, func):

def inner(*args, **kwargs):
return time_func_call(func, self.stream, *args, **kwargs)

remember to forward __name__
inner.__name__ = func.__name__
inner.__module__ = func.__module__
inner.__doc__ = func.__doc__
if hasattr(func, "pipeline_task"):

inner.pipeline_task = func.pipeline_task
return inner

Q. Can a task function in a Ruffus pipeline be called normally outside of Ruffus?

A. Yes. Most python decorators wrap themselves around a function. However, Ruffus leaves the origi-
nal function untouched and unwrapped. Instead, Ruffus adds a pipeline_task attribute to the task
function to signal that this is a pipelined function.

This means the original task function can be called just like any other python function.

Q. My Ruffus tasks create two files at a time. Why is the second one ignored in successive stages
of my pipeline?

This is my code:

2.17. FAQ 215

ruffus Documentation, Release 2.6.3

from ruffus import *
import sys
@transform("start.input", regex(".+"), ("first_output.txt", "second_output.txt"))
def task1(i,o):

pass

@transform(task1, suffix(".txt"), ".result")
def task2(i, o):

pass

pipeline_printout(sys.stdout, [task2], verbose=3)

__
Tasks which will be run:

Task = task1
Job = [start.input

->[first_output.txt, second_output.txt]]

Task = task2
Job = [[first_output.txt, second_output.txt]

->first_output.result]

__

A: This code produces a single output of a tuple of 2 files. In fact, you want two outputs, each consisting
of 1 file.

You want a single job (single input) to be produce multiple outputs (multiple jobs in downstream tasks).
This is a one-to-many operation which calls for @split:

from ruffus import *
import sys
@split("start.input", ("first_output.txt", "second_output.txt"))
def task1(i,o):

pass

@transform(task1, suffix(".txt"), ".result")
def task2(i, o):

pass

pipeline_printout(sys.stdout, [task2], verbose=3)

__
Tasks which will be run:

Task = task1
Job = [start.input

->[first_output.txt, second_output.txt]]

Task = task2
Job = [first_output.txt

->first_output.result]
Job = [second_output.txt

->second_output.result]

__

216 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

Q. How can a Ruffus task produce output which goes off in different directions?

A. As above, anytime there is a situation which requires a one-to-many operation, you should reach
for @subdivide. The advanced form takes a regular expression, making it easier to produce multiple
derivatives of the input file. The following example subdivides 2 jobs each into 3, so that the subsequence
task will run 2 x 3 = 6 jobs.

from ruffus import *
import sys
@subdivide(["1.input_file",

"2.input_file"],
regex(r"(.+).input_file"), # match file prefix

[r"\1.file_type1",
r"\1.file_type2",
r"\1.file_type3"])

def split_task(input, output):
pass

@transform(split_task, regex("(.+)"), r"\1.test")
def test_split_output(i, o):

pass

pipeline_printout(sys.stdout, [test_split_output], verbose = 3)

Each of the original 2 files have been split in three so that test_split_output will run 6 jobs
simultaneously.

__
Tasks which will be run:

Task = split_task
Job = [1.input_file ->[1.file_type1, 1.file_type2, 1.file_type3]]
Job = [2.input_file ->[2.file_type1, 2.file_type2, 2.file_type3]]

Task = test_split_output
Job = [1.file_type1 ->1.file_type1.test]
Job = [1.file_type2 ->1.file_type2.test]
Job = [1.file_type3 ->1.file_type3.test]
Job = [2.file_type1 ->2.file_type1.test]
Job = [2.file_type2 ->2.file_type2.test]
Job = [2.file_type3 ->2.file_type3.test]

__

Q. Can I call extra code before each job?

A. This is easily accomplished by hijacking the process for checking if jobs are up to date or not
(@check_if_uptodate):

from ruffus import *
import sys

def run_this_before_each_job (*args):
print "Calling function before each job using these args", args
Remember to delegate to the default *Ruffus* code for checking if
jobs need to run.
return needs_update_check_modify_time(*args)

2.17. FAQ 217

ruffus Documentation, Release 2.6.3

@check_if_uptodate(run_this_before_each_job)
@files([[None, "a.1"], [None, "b.1"]])
def task_func(input, output):

pass

pipeline_printout(sys.stdout, [task_func])

This results in:
__
>>> pipeline_run([task_func])
Calling function before each job using these args (None, 'a.1')
Calling function before each job using these args (None, 'a.1')
Calling function before each job using these args (None, 'b.1')

Job = [None -> a.1] completed
Job = [None -> b.1] completed

Completed Task = task_func

Note: Because run_this_before_each_job(...) is called whenever Ruffus checks
to see if a job is up to date or not, the function may be called twice for some jobs (e.g. (None,
’a.1’) above).

Q. Does Ruffus allow checkpointing: to distinguish interrupted and completed results?

A. Use the builtin sqlite checkpointing

By default, pipeline_run(...) will save the timestamps for output files from successfully run jobs
to an sqlite database file (.ruffus_history.sqlite) in the current directory .

• If you are using Ruffus.cmdline, you can change the checksum / timestamp database file name
on the command line using --checksum_file_name NNNN

•

The level of timestamping / checksumming can be set via the checksum_level parameter:

pipeline_run(..., checksum_level = N, ...)

where the default is 1:

level 0 : Use only file timestamps
level 1 : above, plus timestamp of successful job completion
level 2 : above, plus a checksum of the pipeline function body
level 3 : above, plus a checksum of the pipeline function default arguments and the additional arguments passed in by task decorators

A. Use a flag file

When gmake is interrupted, it will delete the target file it is updating so that the target is remade from
scratch when make is next run. Ruffus, by design, does not do this because, more often than not, the partial
/ incomplete file may be usefully if only to reveal, for example, what might have caused an interrupting
error or exception. It also seems a bit too clever and underhand to go around the programmer’s back to
delete files...

A common Ruffus convention is create an empty checkpoint or “flag” file whose sole purpose is to record
a modification-time and the successful completion of a job.

218 Chapter 2. Overview:

ruffus Documentation, Release 2.6.3

This would be task with a completion flag:

#
Assuming a pipelined task function named "stage1"
#
@transform(stage1, suffix(".stage1"), [".stage2", ".stage2_finished"])
def stage2 (input_files, output_files):

task_output_file, flag_file = output_files
cmd = ("do_something2 %(input_file)s >| %(task_output_file)s ")
cmd = cmd % {

"input_file": input_files[0],
"task_output_file": task_output_file

}
if not os.system(cmd):

#888
#
It worked: Create completion flag_file
#
open(flag_file, "w")
#
#888

The flag_files xxx.stage2_finished indicate that each job is finished. If this is missing,
xxx.stage2 is only a partial, interrupted result.

The only thing to be aware of is that the flag file will appear in the list of inputs of the downstream task,
which should accordingly look like this:

@transform(stage2, suffix(".stage2"), [".stage3", ".stage3_finished"])
def stage3 (input_files, output_files):

#888
#
Note that the first parameter is a LIST of input files, the last of which
is the flag file from the previous task which we can ignore
#
input_file, previous_flag_file = input_files
#
#888
task_output_file, flag_file = output_files
cmd = ("do_something3 %(input_file)s >| %(task_output_file)s ")
cmd = cmd % {

"input_file": input_file,
"task_output_file": task_output_file

}
completion flag file for this task
if not os.system(cmd):

open(flag_file, "w")

The Bioinformatics example contains code for checkpointing.

A. Use a temp file

Thanks to Martin Goodson for suggesting this and providing an example. In his words:

“I normally use a decorator to create a temporary file which is only renamed after the task has completed
without any problems. This seems a more elegant solution to the problem:”

2.17. FAQ 219

ruffus Documentation, Release 2.6.3

def usetemp(task_func):
""" Decorate a function to write to a tmp file and then rename it. So half finished tasks cannot create up to date targets.
"""
@wraps(task_func)
def wrapper_function(*args, **kwargs):

args=list(args)
outnames=args[1]
if not isinstance(outnames, basestring) and hasattr(outnames, '__getitem__'):

tmpnames=[str(x)+".tmp" for x in outnames]
args[1]=tmpnames
task_func(*args, **kwargs)
try:

for tmp, name in zip(tmpnames, outnames):
if os.path.exists(tmp):

os.rename(tmp, str(name))
except BaseException as e:

for name in outnames:
if os.path.exists(name):

os.remove(name)
raise (e)

else:
tmp=str(outnames)+'.tmp'
args[1]=tmp
task_func(*args, **kwargs)
os.rename(tmp, str(outnames))

return wrapper_function

Use like this:

@files(None, 'client1.price')
@usetemp
def getusers(inputfile, outputname):

#**
code goes here
outputname now refers to temporary file
pass

2.17.4 Windows

Q. Windows seems to spawn ruffus processes recursively

A. It is necessary to protect the “entry point” of the program under windows. Otherwise, a new process
will be started each time the main module is imported by a new Python interpreter as an unintended side
effects. Causing a cascade of new processes.

See: http://docs.python.org/library/multiprocessing.html#multiprocessing-programming

This code works:

if __name__ == '__main__':
try:

pipeline_run([parallel_task], multiprocess = 5)
except Exception, e:

print e.args

220 Chapter 2. Overview:

http://docs.python.org/library/multiprocessing.html#multiprocessing-programming

ruffus Documentation, Release 2.6.3

2.17.5 Sun Grid Engine / PBS / SLURM etc

Q. Can Ruffus be used to manage a cluster or grid based pipeline?

1. Some minimum modifications have to be made to your Ruffus script to allow it to submit jobs to a
cluster

See ruffus.drmaa_wrapper

Thanks to Andreas Heger and others at CGAT and Bernie Pope for contributing ideas and code.

Q. When I submit lots of jobs via Sun Grid Engine (SGE), the head node occassionally freezes and
dies

1. You need to use multithreading rather than multiprocessing. See ruffus.drmaa_wrapper

Q. Keeping Large intermediate files

Sometimes pipelines create a large number of intermediate files which might not be needed later.

Unfortunately, the current design of Ruffus requires these files to hang around otherwise the pipeline will
not know that it ran successfully.

We have some tentative plans to get around this but in the meantime, Bernie Pope suggests truncating
intermediate files in place, preserving timestamps:

truncate a file to zero bytes, and preserve its original modification time
def zeroFile(file):

if os.path.exists(file):
save the current time of the file
timeInfo = os.stat(file)
try:

f = open(file,'w')
except IOError:

pass
else:

f.truncate(0)
f.close()
change the time of the file back to what it was
os.utime(file,(timeInfo.st_atime, timeInfo.st_mtime))

2.17.6 Sharing python objects between Ruffus processes running concurrently

The design of Ruffus envisages that much of the data flow in pipelines occurs in files but it is also possible
to pass python objects in memory.

Ruffus uses the multiprocessing module and much of the following is a summary of what is covered in
depth in the Python Standard Library Documentation.

Running Ruffus using pipeline_run(..., multiprocess = NNN) where NNN > 1 runs each
job concurrently on up to NNN separate local processes. Each task function runs independently in a
different python intepreter, possibly on a different CPU, in the most efficient way. However, this does
mean we have to pay some attention to how data is sent across process boundaries (unlike the situation
with pipeline_run(..., multithread = NNN)).

2.17. FAQ 221

http://docs.python.org/2/library/multiprocessing.html
http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes

ruffus Documentation, Release 2.6.3

The python code and data which comprises your multitasking Ruffus job is sent to a separate process in
three ways:

1. The python function code and data objects are pickled, i.e. converting into a byte stream, by the
master process, sent to the remote process before being converted back into normal python (unpick-
ling).

2. The parameters for your jobs, i.e. what Ruffus calls your task functions with, are separately pickled
and sent to the remote process via multiprocessing.Queue

3. You can share and synchronise other data yourselves. The canonical example is the logger provided
by Ruffus.cmdline.setup_logging

Note: Check that your function code and data can be pickled.

Only functions, built-in functions and classes defined at the top level of a module are picklable.

The following answers are a short “how-to” for sharing and synchronising data yourselves.

Can ordinary python objects be shared between processes?

1. Objects which can be pickled can be shared as is. These include

• numbers

• strings

• tuples, lists, sets, and dictionaries containing only objects which can be pickled.

2. If these do not change during your pipeline, you can just use them without any further effort in your task.

3. If you need to use the value at the point when the task function is called, then you need to pass the python object
as parameters to your task. For example:

changing_list changes...
@transform(previous_task, suffix(".foo"), ".bar", changing_list)
def next_task(input_file, output_file, changing_list):

pass

4. If you need to use the value when the task function is run then see the following answer..

Why am I getting PicklingError?

What is happening? Didn’t Joan of Arc solve this once and for all?

1. Some of the data or code in your function cannot be pickled and is being asked to be sent by python
mulitprocessing across process boundaries.

When you run your pipeline using multiprocess:

pipeline_run([], verbose = 5, multiprocess = 5, logger = ruffusLoggerProxy)

You will get the following errors:

Exception in thread Thread-2:
Traceback (most recent call last):
File "/path/to/python/python2.7/threading.py", line 808, in __bootstrap_inner
self.run()

File "/path/to/python/python2.7/threading.py", line 761, in run

222 Chapter 2. Overview:

http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue
http://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled
http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
https://en.wikipedia.org/wiki/Battle_of_the_Herrings
http://docs.python.org/2/library/pickle.html

ruffus Documentation, Release 2.6.3

self.__target(*self.__args, * *self.__kwargs)
File "/path/to/python/python2.7/multiprocessing/pool.py", line 342, in _handle_tasks
put(task)

PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

which go away when you set pipeline_run([], multiprocess = 1, ...)

Unfortunately, pickling errors are particularly ill-served by standard python error messages. The only
really good advice is to take the offending code and try and pickle it yourself and narrow down the errors.
Check your objects against the list in the pickle module. Watch out especially for nested functions. These
will have to be moved to file scope. Other objects may have to be passed in proxy (see below).

How about synchronising python objects in real time?

1. You can use managers and proxy objects from the multiprocessing module.

The underlying python object would be owned and managed by a (hidden) server process. Other pro-
cesses can access the shared objects transparently by using proxies. This is how the logger provided by
Ruffus.cmdline.setup_logging works:

optional logger which can be passed to ruffus tasks
logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

logger is a proxy for the underlying python logger object, and it can be shared freely between processes.

The best course is to pass logger as a parameter to a Ruffus task.

The only caveat is that we should make sure multiple jobs are not writting to the log at the same time. To
synchronise logging, we use proxy to a non-reentrant multiprocessing.lock.

logger, logger_mutex = cmdline.setup_logging (__name__, options.log_file, options.verbose)

@transform(previous_task, suffix(".foo"), ".bar", logger, logger_mutex)
def next_task(input_file, output_file, logger, logger_mutex):

with logger_mutex:
logger.info("We are in the middle of next_task: %s -> %s" % (input_file, output_file))

Can I share and synchronise my own python classes via proxies?

1. multiprocessing.managers.SyncManager provides out of the box support for lists, arrays and dicts
etc.

Most of the time, we can use a “vanilla” manager provided by multiprocessing.Manager():

import multiprocessing
manager = multiprocessing.Manager()

list_proxy = manager.list()
dict_proxy = manager.dict()
lock_proxy = manager.Lock()
namespace_proxy = manager.Namespace()
queue_proxy = manager.Queue([maxsize])
rentrant_lock_proxy = manager.RLock()
semaphore_proxy = manager.Semaphore([value])
char_array_proxy = manager.Array('c')
integer_proxy = manager.Value('i', 6)

2.17. FAQ 223

http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled
http://docs.python.org/library/multiprocessing.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Lock
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.managers.SyncManager
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.multiprocessing.Manager

ruffus Documentation, Release 2.6.3

@transform(previous_task, suffix(".foo"), ".bar", lock_proxy, dict_proxy, list_proxy)
def next_task(input_file, output_file, lock_proxy, dict_proxy, list_proxy):

with lock_proxy:
list_proxy.append(3)
dict_proxy['a'] = 5

However, you can also create proxy custom classes for your own objects.

In this case you may need to derive from multiprocessing.managers.SyncManager and register proxy
functions. See Ruffus.proxy_logger for an example of how to do this.

How do I send python objects back and forth without tangling myself in horrible synchronisation
code?

1. Sharing python objects by passing messages is a much more modern and safer way to coordinate
multitasking than using synchronization primitives like locks.

The python multiprocessing module provides support for passing python objects as messages between
processes. You can either use pipes or queues. The idea is that one process pushes and object onto a pipe
or queue and the other processes pops it out at the other end. Pipes are only two ended so queues are
usually a better fit for sending data to multiple Ruffus jobs.

Proxies for queues can be passed between processes as in the previous section

How do I share large amounts of data efficiently across processes?

1. If it is really impractical to use data files on disk, you can put the data in shared memory.

It is possible to create shared objects using shared memory which can be inherited by child processes or
passed as Ruffus parameters. This is probably most efficently done via the array interface. Again, it is
easy to create locks and proxies for synchronised access:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

manager = multiprocessing.Manager()

lock_proxy = manager.Lock()
int_array_proxy = manager.Array('i', [123] * 100)

@transform(previous_task, suffix(".foo"), ".bar", lock_proxy, int_array_proxy)
def next_task(input_file, output_file, lock_proxy, int_array_proxy):

with lock_proxy:
int_array_proxy[23] = 71

2.18 Glossary

task A stage in a computational pipeline.

Each task in ruffus is represented by a python function.

For example, a task might be to find the products of a sets of two numbers:

224 Chapter 2. Overview:

http://docs.python.org/2/library/multiprocessing.html#multiprocessing.managers.SyncManager
http://docs.python.org/2/library/multiprocessing.html#pipes-and-queues
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Pipe
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Queue
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.managers.SyncManager.Queue
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.Array

ruffus Documentation, Release 2.6.3

4 x 5 = 20
5 x 6 = 30
2 x 7 = 14

job Any number of operations which can be run in parallel and make up the work in a stage of a computional pipeline.

Each task in ruffus is a separate call to the task function.

For example, if a task is to find products of numbers, each of these will be a separate job.

Job1:

4 x 5 = 20

Job2:

5 x 6 = 30

Job3:

2 x 7 = 14

Jobs need not complete in order.

decorator Ruffus decorators allow functions to be incorporated into a computational pipeline, with automatic gener-
ation of parameters, dependency checking etc., without modifying any code within the function. Quoting from
the python wiki:

A Python decorator is a specific change to the Python syntax that allows us to more conveniently
alter functions and methods.

Decorators dynamically alter the functionality of a function, method, or class without having to
directly use subclasses or change the source code of the function being decorated.

generator python generators are new to python 2.2 (see Charming Python: Iterators and simple generators). They
allow iterable data to be generated on the fly.

Ruffus asks for generators when you want to generate job parameters dynamically.

Each set of job parameters is returned by the yield keyword for greater clarity. For example,:

def generate_job_parameters():

for file_index, file_name in iterate(all_file_names):

parameter for each job
yield file_index, file_name

Each job takes the parameters file_index and file_name

2.19 Hall of Fame: User contributed flowcharts

Please contribute your own work flows in your favourite colours with (an optional) short description to email: ruf-
fus_lib at llew.org.uk

2.19. Hall of Fame: User contributed flowcharts 225

http://wiki.python.org/moin/PythonDecorators
http://www.ibm.com/developerworks/library/l-pycon.html

ruffus Documentation, Release 2.6.3

2.19.1 RNASeq pipeline

http://en.wikipedia.org/wiki/RNA-Seq

Mapping transcripts onto genomes using high-throughput sequencing technologies (svg).

226 Chapter 2. Overview:

http://en.wikipedia.org/wiki/RNA-Seq

ruffus Documentation, Release 2.6.3

2.19. Hall of Fame: User contributed flowcharts 227

ruffus Documentation, Release 2.6.3

2.19.2 non-coding evolutionary constraints

http://en.wikipedia.org/wiki/Noncoding_DNA

Non-protein coding evolutionary constraints in different species (svg).

2.19.3 SNP annotation

Predicting impact of different Single Nucleotide Polymorphisms

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

Population variation across genomes (svg).

228 Chapter 2. Overview:

http://en.wikipedia.org/wiki/Noncoding_DNA
http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

ruffus Documentation, Release 2.6.3

Using “pseudo” targets to run only part of the pipeline (svg).

2.19.4 Chip-Seq analysis

Analysing DNA binding sites with Chip-Seq http://en.wikipedia.org/wiki/Chip-Sequencing

(svg)

2.20 Why Ruffus?

Cylindrophis ruffus is the name of the red-tailed pipe snake (bad python-y pun) which can be found in Hong Kong
where the original author comes from.

Ruffus is a shy creature, and pretends to be a cobra or a banded krait by putting up its red tail and ducking its head in
its coils when startled.

2.20. Why Ruffus? 229

http://en.wikipedia.org/wiki/Chip-Sequencing
http://en.wikipedia.org/wiki/Cylindrophis_ruffus
http://www.discoverhongkong.com/eng/index.html
http://en.wikipedia.org/wiki/File:Bandedkrait.jpg

ruffus Documentation, Release 2.6.3

• Not venomous
• Mostly Harmless

• Deadly poisonous
• Seriously unfriendly

Be careful not to step on one when running down country park lanes at full speed in Hong Kong: this snake is a rare
breed!

Ruffus does most of its work at night and sleeps during the day: typical of many (but alas not all) python programmers!

The original red-tail pipe and banded krait images are from wikimedia.

230 Chapter 2. Overview:

http://en.wikipedia.org/wiki/Mostly_Harmless
http://en.wikipedia.org/wiki/List_of_races_and_species_in_The_Hitchhiker's_Guide_to_the_Galaxy#Ravenous_Bugblatter_Beast_of_Traal
http://www.hkras.org/eng/info/hkspp.htm
http://www.hkras.org/eng/info/hkspp.htm
http://upload.wikimedia.org/wikipedia/commons/a/a1/Cyl_ruffus_061212_2025_tdp.jpg
http://en.wikipedia.org/wiki/File:AB_054_Banded_Krait.JPG

CHAPTER

THREE

EXAMPLES

3.1 Construction of a simple pipeline to run BLAST jobs

3.1.1 Overview

This is a simple example to illustrate the convenience Ruffus brings to simple tasks in bioinformatics.

1. Split a problem into multiple fragments that can be

2. Run in parallel giving partial solutions that can be

3. Recombined into the complete solution.

The example code runs a ncbi blast search for four sequences against the human refseq protein sequence
database.

1. Split each of the four sequences into a separate file.

2. Run in parallel Blastall on each sequence file

3. Recombine the BLAST results by simple concatenation.

In real life,

• BLAST already provides support for multiprocessing

• Sequence files would be split in much larger chunks, with many sequences

• The jobs would be submitted to large computational farms (in our case, using the SunGrid Engine).

• The High Scoring Pairs (HSPs) would be parsed / filtered / stored in your own formats.

Note: This bioinformatics example is intended to showcase some of the features of Ruffus.

1. See the manual to learn about the various features in Ruffus.

3.1.2 Prerequisites

1. Ruffus

To install Ruffus on most systems with python installed:

easy_install -U ruffus

Otherwise, download Ruffus and run:

231

http://blast.ncbi.nlm.nih.gov/
http://en.wikipedia.org/wiki/BLAST
http://en.wikipedia.org/wiki/RefSeq
http://blast.ncbi.nlm.nih.gov/
http://code.google.com/p/ruffus/downloads/list

ruffus Documentation, Release 2.6.3

tar -xvzf ruffus-xxx.tar.gz
cd ruffus-xxx
./setup install

where xxx is the latest Ruffus version.

2. BLAST

This example assumes that the BLAST blastall and formatdb executables are installed and on the
search path. Otherwise download from here.

3. human refseq sequence database

We also need to download the human refseq sequence file and format the ncbi database:

wget ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein.faa.gz
gunzip human.protein.faa.gz

formatdb -i human.protein.faa

4. test sequences

Query sequences in FASTA format can be found in original.fa

3.1.3 Code

The code for this example can be found here and pasted into the python command shell.

3.1.4 Step 1. Splitting up the query sequences

We want each of our sequences in the query file original.fa to be placed in a separate files named
XXX.segment where XXX = 1 -> the number of sequences.

current_file_index = 0
for line in open("original.fa"):

start a new file for each accession line
if line[0] == '>':

current_file_index += 1
current_file = open("%d.segment" % current_file_index, "w")

current_file.write(line)

To use this in a pipeline, we only need to wrap this in a function, “decorated” with the Ruffus keyword
@split:

232 Chapter 3. Examples

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download

ruffus Documentation, Release 2.6.3

This indicates that we are splitting up the input file original.fa into however many *.segment files as it
takes.
The pipelined function itself takes two arguments, for the input and output.

We shall see later this simple @split decorator already gives all the benefits of:

• Dependency checking

• Flowchart printing

3.1.5 Step 2. Run BLAST jobs in parallel

Assuming that blast is already installed, sequence matches can be found with this python code:

os.system("blastall -p blastp -d human.protein.faa -i 1.segment > 1.blastResult")

To pipeline this, we need to simply wrap in a function, decorated with the Ruffus keyword @transform.

This indicates that we are taking all the output files from the previous splitFasta operation
(*.segment) and @transform-ing each to a new file with the .blastResult suffix. Each of these
transformation operations can run in parallel if specified.

3.1.6 Step 3. Combining BLAST results

The following python code will concatenate the results together

3.1. Construction of a simple pipeline to run BLAST jobs 233

ruffus Documentation, Release 2.6.3

output_file = open("final.blast_results", "w")
for i in glob("*.blastResults"):

output_file.write(open(i).read())

To pipeline this, we need again to decorate with the Ruffus keyword @merge.

This indicates that we are taking all the output files from the previous runBlast operation
(*.blastResults) and @merge-ing them to the new file final.blast_results.

3.1.7 Step 4. Running the pipeline

We can run the completed pipeline using a maximum of 4 parallel processes by calling pipeline_run :

pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

Though we have only asked Ruffus to run combineBlastResults, it traces all the dependencies of
this task and runs all the necessary parts of the pipeline.

Note: The full code for this example can be found here suitable for pasting into the python command
shell.

The verbose parameter causes the following output to be printed to stderr as the pipeline runs:

>>> pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)
Job = [original.fa -> *.segment] completed

Completed Task = splitFasta
Job = [1.segment -> 1.blastResult] completed
Job = [3.segment -> 3.blastResult] completed
Job = [2.segment -> 2.blastResult] completed
Job = [4.segment -> 4.blastResult] completed

Completed Task = runBlast
Job = [[1.blastResult, 2.blastResult, 3.blastResult, 4.blastResult] -> final.blast_results] completed

Completed Task = combineBlastResults

3.1.8 Step 5. Testing dependencies

If we invoked pipeline_run again, nothing further would happen because the pipeline is now up-to-date.
But what if the pipeline had not run to completion?

We can simulate the failure of one of the blastall jobs by deleting its results:

os.unlink("4.blastResult")

Let us use the pipeline_printout function to print out the dependencies of the pipeline at a high verbose
level which will show both complete and incomplete jobs:

234 Chapter 3. Examples

ruffus Documentation, Release 2.6.3

>>> import sys
>>> pipeline_printout(sys.stdout, [combineBlastResults], verbose = 4)

__
Tasks which are up-to-date:

Task = splitFasta
"Split sequence file into as many fragments as appropriate depending on the size of

original_fasta"

__
Tasks which will be run:

Task = runBlast
"Run blast"

Job = [4.segment
->4.blastResult]

Job needs update: Missing file 4.blastResult

Task = combineBlastResults
"Combine blast results"

Job = [[1.blastResult, 2.blastResult, 3.blastResult, 4.blastResult]
->final.blast_results]

Job needs update: Missing file 4.blastResult

__

Only the parts of the pipeline which involve the missing BLAST result will be rerun. We can confirm this
by invoking the pipeline.

>>> pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

Job = [1.segment -> 1.blastResult] unnecessary: already up to date
Job = [2.segment -> 2.blastResult] unnecessary: already up to date
Job = [3.segment -> 3.blastResult] unnecessary: already up to date
Job = [4.segment -> 4.blastResult] completed

Completed Task = runBlast
Job = [[1.blastResult, 2.blastResult, 3.blastResult, 4.blastResult] -> final.blast_results] completed

Completed Task = combineBlastResults

3.1.9 What is next?

In the next (short) part, we shall add some standard (boilerplate) code to turn this BLAST pipeline into a
(slightly more) useful python program.

3.2 Part 2: A slightly more practical pipeline to run blasts jobs

3.2.1 Overview

Previously, we had built a simple pipeline to split up a FASTA file of query sequences so that these can
be matched against a sequence database in parallel.

We shall wrap this code so that

3.2. Part 2: A slightly more practical pipeline to run blasts jobs 235

ruffus Documentation, Release 2.6.3

• It is more robust to interruptions

• We can specify the file names on the command line

3.2.2 Step 1. Cleaning up any leftover junk from previous pipeline runs

We split up each of our sequences in the query file original.fa into a separate files named
XXX.segment where XXX is the number of sequences in the FASTA file.

However, if we start with 6 sequences (giving 1.segment ... 6.segment), and we then edited
original.fa so that only 5 were left, the file 6.segment would still be left hanging around as an
unwanted, extraneous and confusing orphan.

As a general rule, it is a good idea to clean up the results of a previous run in a @split operation:

@split("original.fa", "*.segment")
def splitFasta (seqFile, segments):

#
Clean up any segment files from previous runs before creating new one
#
for i in glob.glob("*.segment"):

os.unlink(i)

code as before...

3.2.3 Step 2. Adding a “flag” file to mark successful completion

When pipelined tasks are interrupted half way through an operation, the output may only contain part of
the results in an incomplete or inconsistent state. There are three general options to deal with this:

1. Catch any interrupting conditions and delete the incomplete output

2. Tag successfully completed output with a special marker at the end of the file

3. Create an empty “flag” file whose only point is to signal success

Option (3) is the most reliable way and involves the least amount of work in Ruffus. We add flag files
with the suffix .blastSuccess for our parallel BLAST jobs:

@transform(splitFasta, suffix(".segment"), [".blastResult", ".blastSuccess"])
def runBlast(seqFile, output_files):

blastResultFile, flag_file = output_files

#
Existing code unchanged
#
os.system("blastall -p blastp -d human.protein.faa "+

"-i %s > %s" % (seqFile, blastResultFile))

#
"touch" flag file to indicate success
#
open(flag_file, "w")

236 Chapter 3. Examples

ruffus Documentation, Release 2.6.3

3.2.4 Step 3. Allowing the script to be invoked on the command line

We allow the query sequence file, as well as the sequence database and end results to be specified
at runtime using the standard python optparse module. We find this approach to run time arguments
generally useful for many Ruffus scripts. The full code can be viewed here and downloaded from
run_parallel_blast.py.

The different options can be inspected by running the script with the --help or -h argument.

The following options are useful for developing Ruffus scripts:

--verbose | -v : Print more detailed messages for each additional verbose level.
E.g. run_parallel_blast --verbose --verbose --verbose ... (or -vvv)

--jobs | -j : Specifies the number of jobs (operations) to run in parallel.

--flowchart FILE : Print flowchart of the pipeline to FILE. Flowchart format
depends on extension. Alternatives include (".dot", ".jpg",
"*.svg", "*.png" etc). Formats other than ".dot" require
the dot program to be installed (http://www.graphviz.org/).

--just_print | -n Only print a trace (description) of the pipeline.
The level of detail is set by --verbose.

3.2.5 Step 4. Printing out a flowchart for the pipeline

The --flowchart argument results in a call to pipeline_printout_graph(...) This prints
out a flowchart of the pipeline. Valid formats include ”.dot”, ”.jpg”, ”.svg”, ”.png” but all except for the
first require the dot program to be installed (http://www.graphviz.org/).

The state of the pipeline is reflected in the flowchart:

3.2.6 Step 5. Errors

Because Ruffus scripts are just normal python functions, you can debug them using your usual tools, or
jump to the offending line(s) even when the pipeline is running in parallel.

For example, these are the what the error messages would look like if we had mis-spelt blastal. In
run_parallel_blast.py, python exceptions are raised if the blastall command fails.

3.2. Part 2: A slightly more practical pipeline to run blasts jobs 237

http://docs.python.org/library/optparse.html
http://www.graphviz.org/

ruffus Documentation, Release 2.6.3

Each of the exceptions for the parallel operations are printed out with the offending lines (line 204), and
problems (blastal not found) highlighted in red.

3.2.7 Step 6. Will it run?

The full code can be viewed here and downloaded from run_parallel_blast.py.

238 Chapter 3. Examples

ruffus Documentation, Release 2.6.3

3.3 Ruffus code

import os, sys

exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]
sys.path.insert(0, os.path.abspath(os.path.join(exe_path,"..", "..","..")))

from ruffus import *

original_fasta = "original.fa"
database_file = "human.protein.faa"

@split(original_fasta, "*.segment")
def splitFasta (seqFile, segments):

"""Split sequence file into
as many fragments as appropriate
depending on the size of original_fasta"""

current_file_index = 0
for line in open(original_fasta):

#
start a new file for each accession line
#
if line[0] == '>':

current_file_index += 1
current_file = open("%d.segment" % current_file_index, "w")

current_file.write(line)

@transform(splitFasta, suffix(".segment"), ".blastResult")
def runBlast(seqFile, blastResultFile):

"""Run blast"""
os.system("blastall -p blastp -d %s -i %s > %s" %

(database_file, seqFile, blastResultFile))

@merge(runBlast, "final.blast_results")
def combineBlastResults (blastResultFiles, combinedBlastResultFile):

"""Combine blast results"""
output_file = open(combinedBlastResultFile, "w")
for i in blastResultFiles:

output_file.write(open(i).read())

pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

#
Simulate interuption of the pipeline by
deleting the output of one of the BLAST jobs
#
os.unlink("4.blastResult")

pipeline_printout(sys.stdout, [combineBlastResults], verbose = 4)

#

3.3. Ruffus code 239

ruffus Documentation, Release 2.6.3

Re-running the pipeline
#
pipeline_run([combineBlastResults], verbose = 2, multiprocess = 4)

3.4 Ruffus code

#!/usr/bin/env python
"""

run_parallel_blast.py
[--log_file PATH]
[--quiet]

"""

##
#
run_parallel_blast
#
#
Copyright (c) 4/21/2010 Leo Goodstadt
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
###
import os, sys
exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]
sys.path.insert(0,os.path.abspath(os.path.join(exe_path,"..", "..")))

#888

options

#888

from optparse import OptionParser
import sys, os

exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0]

240 Chapter 3. Examples

ruffus Documentation, Release 2.6.3

parser = OptionParser(version="%prog 1.0", usage = "\n\n %prog --input_file QUERY_FASTA --database_file FASTA_DATABASE [more_options]")
parser.add_option("-i", "--input_file", dest="input_file",

metavar="FILE",
type="string",
help="Name and path of query sequence file in FASTA format. ")

parser.add_option("-d", "--database_file", dest="database_file",
metavar="FILE",
type="string",
help="Name and path of FASTA database to search. ")

parser.add_option("--result_file", dest="result_file",
metavar="FILE",
type="string",
default="final.blast_results",
help="Name and path of where the files should end up. ")

parser.add_option("-t", "--temp_directory", dest="temp_directory",
metavar="PATH",
type="string",
default="tmp",
help="Name and path of temporary directory where calculations "

"should take place. ")

#
general options: verbosity / logging
#
parser.add_option("-v", "--verbose", dest = "verbose",

action="count", default=0,
help="Print more detailed messages for each additional verbose level."

" E.g. run_parallel_blast --verbose --verbose --verbose ... (or -vvv)")

#
pipeline
#
parser.add_option("-j", "--jobs", dest="jobs",

default=1,
metavar="jobs",
type="int",
help="Specifies the number of jobs (operations) to run in parallel.")

parser.add_option("--flowchart", dest="flowchart",
metavar="FILE",
type="string",
help="Print flowchart of the pipeline to FILE. Flowchart format "

"depends on extension. Alternatives include ('.dot', '.jpg', "
"'*.svg', '*.png' etc). Formats other than '.dot' require "
"the dot program to be installed (http://www.graphviz.org/).")

parser.add_option("-n", "--just_print", dest="just_print",
action="store_true", default=False,
help="Only print a trace (description) of the pipeline. "

" The level of detail is set by --verbose.")

(options, remaining_args) = parser.parse_args()

if not options.flowchart:
if not options.database_file:

parser.error("\n\n\tMissing parameter --database_file FILE\n\n")
if not options.input_file:

parser.error("\n\n\tMissing parameter --input_file FILE\n\n")

3.4. Ruffus code 241

ruffus Documentation, Release 2.6.3

#888

imports

#888

from ruffus import *
import subprocess

#888

Functions

#888
def run_cmd(cmd_str):

"""
Throw exception if run command fails
"""
process = subprocess.Popen(cmd_str, stdout = subprocess.PIPE,

stderr = subprocess.PIPE, shell = True)
stdout_str, stderr_str = process.communicate()
if process.returncode != 0:

raise Exception("Failed to run '%s'\n%s%sNon-zero exit status %s" %
(cmd_str, stdout_str, stderr_str, process.returncode))

#888

Logger

#888

import logging
logger = logging.getLogger("run_parallel_blast")
#
We are interesting in all messages
#
if options.verbose:

logger.setLevel(logging.DEBUG)
stderrhandler = logging.StreamHandler(sys.stderr)
stderrhandler.setFormatter(logging.Formatter(" %(message)s"))
stderrhandler.setLevel(logging.DEBUG)
logger.addHandler(stderrhandler)

#888

Pipeline tasks

#888
original_fasta = options.input_file

242 Chapter 3. Examples

ruffus Documentation, Release 2.6.3

database_file = options.database_file
temp_directory = options.temp_directory
result_file = options.result_file

@follows(mkdir(temp_directory))

@split(original_fasta, os.path.join(temp_directory, "*.segment"))
def splitFasta (seqFile, segments):

"""Split sequence file into
as many fragments as appropriate
depending on the size of original_fasta"""

#
Clean up any segment files from previous runs before creating new one
#
for i in segments:

os.unlink(i)
#
current_file_index = 0
for line in open(original_fasta):

#
start a new file for each accession line
#
if line[0] == '>':

current_file_index += 1
file_name = "%d.segment" % current_file_index
file_path = os.path.join(temp_directory, file_name)
current_file = open(file_path, "w")

current_file.write(line)

@transform(splitFasta, suffix(".segment"), [".blastResult", ".blastSuccess"])
def runBlast(seqFile, output_files):

#
blastResultFile, flag_file = output_files
#
run_cmd("blastall -p blastp -d human.protein.faa -i %s > %s" % (seqFile, blastResultFile))
#
"touch" flag file to indicate success
#
open(flag_file, "w")

@merge(runBlast, result_file)
def combineBlastResults (blastResult_and_flag_Files, combinedBlastResultFile):

"""Combine blast results"""
#
output_file = open(combinedBlastResultFile, "w")
for blastResult_file, flag_file in blastResult_and_flag_Files:

output_file.write(open(blastResult_file).read())

3.4. Ruffus code 243

ruffus Documentation, Release 2.6.3

#888

Print list of tasks

#888
if options.just_print:

pipeline_printout(sys.stdout, [combineBlastResults], verbose=options.verbose)

#888

Print flowchart

#888
elif options.flowchart:

use file extension for output format
output_format = os.path.splitext(options.flowchart)[1][1:]
pipeline_printout_graph (open(options.flowchart, "w"),

output_format,
[combineBlastResults],
no_key_legend = True)

#888

Run Pipeline

#888
else:

pipeline_run([combineBlastResults], multiprocess = options.jobs,
logger = logger, verbose=options.verbose)

3.5 Example code for FAQ Good practices: “What is the best way of
handling data in file pairs (or triplets etc.)?”

See also:

• @collate

#!/usr/bin/env python
import sys, os

from ruffus import *
import ruffus.cmdline as cmdline
from subprocess import check_call

parser = cmdline.get_argparse(description="Parimala's pipeline?")

.
Very flexible handling of input files .
.
input files can be specified flexibly as: .
--input a.fastq b.fastq .
--input a.fastq --input b.fastq .
--input *.fastq --input other/*.fastq .
--input "*.fastq" .
.
The last form is expanded in the script and avoids limitations on command .

244 Chapter 3. Examples

ruffus Documentation, Release 2.6.3

line lengths .
.
parser.add_argument('-i', '--input', nargs='+', metavar="FILE", action="append", help = "Fastq files")

options = parser.parse_args()

standard python logger which can be synchronised across concurrent Ruffus tasks
logger, logger_mutex = cmdline.setup_logging ("PARIMALA", options.log_file, options.verbose)

.
Useful code to turn input files into a flat list .
.
from glob import glob
original_data_files = [fn for grouped in options.input for glob_spec in grouped for fn in glob(glob_spec)] if options.input else []
if not original_data_files:

original_data_files = [["C1W1_R1.fastq.gz", "C1W1_R2.fastq.gz"]]
#raise Exception ("No matching files specified with --input.")

<<<---- pipelined functions go here

#___
.
Group together file pairs .
#___
@collate(original_data_files,

match file name up to the "R1.fastq.gz"
formatter("([^/]+)R[12].fastq.gz$"),
Create output parameter supplied to next task
["{path[0]}/{1[0]}paired.R1.fastq.gz", # paired file 1
"{path[0]}/{1[0]}paired.R2.fastq.gz"], # paired file 2

Extra parameters for our own convenience and use
["{path[0]}/{1[0]}unpaired.R1.fastq.gz", # unpaired file 1
"{path[0]}/{1[0]}unpaired.R2.fastq.gz"], # unpaired file 2

logger, logger_mutex)
def trim_fastq(input_files, output_paired_files, discarded_unpaired_files, logger, logger_mutex):

if len(input_files) != 2:
raise Exception("One of read pairs %s missing" % (input_files,))

cmd = ("java -jar ~/SPRING-SUMMER_2014/Softwares/Trimmomatic/Trimmomatic-0.32/trimmomatic-0.32.jar "
" PE -phred33 "
" {input_files[0]} {input_files[1]} "
" {output_paired_files[0]} {output_paired_files[1]} "
" {discarded_unpaired_files[0]} {discarded_unpaired_files[1]} "
" LEADING:30 TRAILING:30 SLIDINGWINDOW:4:15 MINLEN:50 "

)

check_call(cmd.format(**locals()))

with logger_mutex:
logger.debug("Hooray trim_fastq worked")

#___
.
Each file pair now makes its way down the rest of the pipeline as .
a couple .
#___
@transform(trim_fastq,

regular expression match on first of pe files
formatter("([^/]+)paired.R1.fastq.gz$"),

3.5. Example code for FAQ Good practices: “What is the best way of handling data in file pairs (or
triplets etc.)?”

245

ruffus Documentation, Release 2.6.3

Output parameter supplied to next task
"{path[0]}/{1[0]}.sam"

Extra parameters for our own convenience and use
"{path[0]}/{1[0]}.pe_soap_pe", # soap intermediate file
"{path[0]}/{1[0]}.pe_soap_se", # soap intermediate file
logger, logger_mutex)

def align_seq(input_files, output_file, soap_pe_output_file, soap_se_output_file, logger, logger_mutex):
if len(input_files) != 2:

raise Exception("One of read pairs %s missing" % (input_files,))
cmd = ("~/SPRING-SUMMER_2014/Softwares/soap2.21release/soap "

" -a {input_files[0]} "
" -b {input_files[1]} "
" -D Y55_genome.fa.index* "
" -o {soap_pe_output_file} -2 {soap_se_output_file} -m 400 -x 600")

check_call(cmd.format(**locals()))

#Soap_to_sam
cmd = " perl ~/SPRING-SUMMER_2014/Softwares/soap2sam.pl -p {soap_pe_output_file} > {output_file}"

check_call(cmd.format(**locals()))

with logger_mutex:
logger.debug("Hooray align_seq worked")

cmdline.run (options)

246 Chapter 3. Examples

CHAPTER

FOUR

REFERENCE:

4.1 Decorators

4.1.1 Ruffus Decorators

See also:

Indicator objects

Core

Decorator Examples
@originate (Summary / Manual)

• Creates (originates) a set of
starting file without dependen-
cies from scratch (ex nihilo!)

• Only called to create files
which do not exist.

• Invoked onces (a job
created) per item in the
output_files list.

• @originate (output_files, [extra_parameters,...])

@split (Summary / Manual)
• Splits a single input into multi-

ple output
• Globs in output can spec-

ify an indeterminate number of
files.

• @split (tasks_or_file_names, output_files, [extra_parameters,...])

@transform (Summary / Manual)
• Applies the task function to

transform input data to output.

• @transform (tasks_or_file_names, suffix(suffix_string), output_pattern, [extra_parameters,...])

• @transform (tasks_or_file_names, regex(regex_pattern), output_pattern, [extra_parameters,...])

• @transform (tasks_or_file_names, formatter(regex_pattern), output_pattern, [extra_parameters,...])

@merge (Summary / Manual)
• Merges multiple input files into

a single output.

• @merge (tasks_or_file_names, output, [extra_parameters,...])

247

ruffus Documentation, Release 2.6.3

248 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

Combinatorics

Decorator Examples
@product (Summary / Manual)

• Generates the product, i.e. all
vs all comparisons, between
sets of input files.

• @product (tasks_or_file_names, formatter ([regex_pattern]) ,*[* tasks_or_file_names, formatter ([regex_pattern]),], output_pattern, [extra_parameters,...])

@permutations (Summary / Man-
ual)

• Generates the permutations,
between all the elements of a
set of Input

• Analogous to the python iter-
tools.permutations

• permutations(‘ABCD’, 2) –>
AB AC AD BA BC BD CA CB
CD DA DB DC

• @permutations (tasks_or_file_names, formatter ([regex_pattern]), tuple_size, output_pattern, [extra_parameters,...])

@combinations (Summary / Man-
ual)

• Generates the permutations,
between all the elements of a
set of Input

• Analogous to the python iter-
tools.combinations

• combinations(‘ABCD’, 3) –>
ABC ABD ACD BCD

• Generates the combinations,
between all the elements of a
set of Input: i.e. r-length tu-
ples of input elements with no
repeated elements (A A) and
where order of the tuples is ir-
relevant (either A B or B A, not
both).

• @combinations (tasks_or_file_names, formatter ([regex_pattern]), tuple_size, output_pattern, [extra_parameters,...])

@combinations_with_replacement
(Summary / Manual)

• Generates the permutations,
between all the elements of a
set of Input

• Analogous to the python iter-
tools.permutations

• combinations(‘ABCD’, 3) –>
ABC ABD ACD BCD

• Generates the combina-
tions_with_replacement,
between all the elements of
a set of Input: i.e. r-length
tuples of input elements with
no repeated elements (A A)
and where order of the tuples
is irrelevant (either A B or B
A, not both).

• @combinations_with_replacement (tasks_or_file_names, formatter ([regex_pattern]), tuple_size, output_pattern, [extra_parameters,...])

4.1. Decorators 249

http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/2/library/itertools.html#itertools.permutations

ruffus Documentation, Release 2.6.3

250 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

Advanced

Decorator Examples
@subdivide (Summary / Man-
ual) - Subdivides a set of Inputs
each further into multiple Out-
puts. - The number of files in
each Output can be set at runtime
by the use of globs. - Many to
Even More operator. - The use
of split is a synonym for subdi-
vide is deprecated.

• @subdivide (tasks_or_file_names, regex(regex_pattern), [inputs | add_inputs(input_pattern),] output_pattern, [extra_parameters,...])

• @subdivide (tasks_or_file_names, formatter([regex_pattern]), [inputs | add_inputs(input_pattern),] output_pattern, [extra_parameters,...])

@transform (Summary / Man-
ual)

• Infers input as well as out-
put from regular expression
substitutions

• Useful for adding addi-
tional file dependencies

• @transform (tasks_or_file_names, regex(regex_pattern), [inputs | add_inputs(input_pattern),] output_pattern, [extra_parameters,...])

• @transform (tasks_or_file_names, formatter(regex_pattern), [inputs | add_inputs(input_pattern),] output_pattern, [extra_parameters,...])

@collate (Summary / Manual)
• Groups multiple input files

using regular expression
matching

• Input resulting in the same
output after substitution
will be collated together.

• @collate (tasks_or_file_names, regex(regex_pattern), output_pattern, [extra_parameters,...])

• @collate (tasks_or_file_names, regex(regex_pattern), inputs | add_inputs(input_pattern), output_pattern, [extra_parameters,...])

• @collate (tasks_or_file_names, formatter(formatter_pattern), output_pattern, [extra_parameters,...])

• @collate (tasks_or_file_names, formatter(formatter_pattern), inputs | add_inputs(input_pattern), output_pattern, [extra_parameters,...])

@follows (Summary / Manual)
• Indicates task dependency
• optional mkdir prerequisite

(see Manual)

• @follows (task1, ’task2’))

• @follows (task1, mkdir(’my/directory/’))

@posttask (Summary / Manual)
• Calls function after task

completes
• Optional touch_file indica-

tor (Manual)

• @posttask (signal_task_completion_function)

• @posttask (touch_file(’task1.completed’))

@active_if (Summary / Manual)
• Switches tasks on and off at

run time depending on its
parameters

• Evaluated each time
pipeline_run(...),
pipeline_printout(...) or
pipeline_printout_graph(...)
is called.

• Dormant tasks behave as if
they are up to date and have
no output.

• @active_if (on_or_off1, [on_or_off2, ...])

@jobs_limit (Summary / Man-
ual)

• Limits the amount of multi-
processing for the specified
task

• Ensures that fewer than N
jobs for this task are run in
parallel

• Overrides
multiprocess pa-
rameter in pipeline_run(...)

• @jobs_limit (NUMBER_OF_JOBS_RUNNING_CONCURRENTLY)

@mkdir (Summary / Manual)
• Generates paths for

os.makedirs

• @mkdir (tasks_or_file_names, suffix(suffix_string), output_pattern)

• @mkdir (tasks_or_file_names, regex(regex_pattern), output_pattern)

• @mkdir (tasks_or_file_names, formatter(regex_pattern), output_pattern)

@graphviz (Summary / Manual)
• Customise the graphic

for each task in printed
flowcharts

• @graphviz (graphviz_parameter = XXX, [graphviz_parameter2 = YYY ...])

4.1. Decorators 251

http://docs.python.org/2/library/os.html#os.makedirs

ruffus Documentation, Release 2.6.3

Esoteric!

Decorator Examples
@files (Summary / Manual)

• I/O parameters
• skips up-to-date jobs
• Should use @transform etc

instead

• @files(parameter_list)

• @files(parameter_generating_function)

• @files (input_file, output_file, other_params, ...)

@parallel (Summary / Manual)
• By default, does not check

if jobs are up to date
• Best used in conjuction

with @check_if_uptodate

• @parallel (parameter_list) (see Manual)

• @parallel (parameter_generating_function) (see Manual)

@check_if_uptodate (Summary
/ Manual)

• Custom function to deter-
mine if jobs need to be run

• @check_if_uptodate (is_task_up_to_date_function)

Tip:
The use of this overly complicated function is discouraged.

@files_re (Summary)
• I/O file names via reg-

ular expressions
• start from lists of file

names or glob results
• skips up-to-date jobs

• @files_re (tasks_or_file_names, matching_regex, [input_pattern,] output_pattern, ...)
input_pattern/output_pattern
are regex patterns used
to create input/output
file names from the
starting list of either
glob_str or file names

See also:

• Decorators

• suffix(...) in the Ruffus Manual

• regex(...) in the Ruffus Manual

• formatter(...) in the Ruffus Manual

4.1.2 Indicator Objects

How ruffus disambiguates certain parameters to decorators.

They are like keyword arguments in python, a little more verbose but they make the syntax much simpler.

Indicator objects are also “self-documenting” so you can see exactly what is happening clearly.

formatter

formatter([regex | None , regex | None...])

• The optional enclosed parameters are a python regular expression strings

252 Chapter 4. Reference:

http://docs.python.org/library/glob.html
http://docs.python.org/tutorial/controlflow.html#keyword-arguments

ruffus Documentation, Release 2.6.3

• Each regular expression matches a corresponding Input file name string

• formatter parses each file name string into path and regular expression components

• Parsing fails altogether if the regular expression is not matched

Path components include:

• basename: The base name excluding extension, "file.name"

• ext : The extension, ".ext"

• path : The dirname, "/directory/to/a"

• subdir : A list of sub-directories in the path in reverse order, ["a", "to", "directory",
"/"]

• subpath : A list of descending sub-paths in reverse order, ["/directory/to/a",
"/directory/to", "/directory", "/"]

The replacement string refers to these components using python string.format style curly braces. {NAME}

We refer to an element from the Nth input string by index, for example:

• "{ext[0]}" is the extension of the first input string.

• "{basename[1]}" is the basename of the second input string.

• "{basename[1][0:3]}" are the first three letters from the basename of the second input string.

Used by:

• @split

• @transform

• @merge

• @subdivide

• @collate

• @product

• @permutations

• @combinations

• @combinations_with_replacement

@transform example:

from ruffus import *

create initial file pairs
@originate([['job1.a.start', 'job1.b.start'],

['job2.a.start', 'job2.b.start'],
['job3.a.start', 'job3.c.start']])

def create_initial_file_pairs(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

#---
#
formatter
#

4.1. Decorators 253

http://docs.python.org/2/library/os.path.html#os.path.basename
http://docs.python.org/2/library/os.path.html#os.path.splitext
http://docs.python.org/2/library/os.path.html#os.path.splitext
http://docs.python.org/2/library/os.path.html#os.path.dirname
http://docs.python.org/2/library/string.html#string-formatting

ruffus Documentation, Release 2.6.3

@transform(create_initial_file_pairs, # Input

formatter(".+/job(?P<JOBNUMBER>\d+).a.start", # Extract job number
".+/job[123].b.start"), # Match only "b" files

["{path[0]}/jobs{JOBNUMBER[0]}.output.a.1", # Replacement list
"{path[1]}/jobs{JOBNUMBER[0]}.output.b.1"])

def first_task(input_files, output_parameters):
print "input_parameters = ", input_files
print "output_parameters = ", output_parameters

#
Run
#
pipeline_run(verbose=0)

This produces:

input_parameters = ['job1.a.start',
'job1.b.start']

output_parameters = ['/home/lg/src/temp/jobs1.output.a.1',
'/home/lg/src/temp/jobs1.output.b.1', 45]

input_parameters = ['job2.a.start',
'job2.b.start']

output_parameters = ['/home/lg/src/temp/jobs2.output.a.1',
'/home/lg/src/temp/jobs2.output.b.1', 45]

@permutations example:

Combinatoric decorators such as @product or @product behave much like nested for loops in
enumerating, combining, and permutating the original sets of inputs.

The replacement strings require an extra level of indirection to refer to parsed components:

from ruffus import *
from ruffus.combinatorics import *

create initial files
@originate(['a.start', 'b.start', 'c.start'])
def create_initial_files(output_file):

with open(output_file, "w") as oo: pass

#---
#
formatter
#
@permutations(create_initial_files, # Input

formatter("(.start)$"), # match input file in permutations
2,

"{path[0][0]}/{basename[0][0]}_vs_{basename[1][0]}.product", # Output Replacement string
"{path[0][0]}", # path for 1st set of files, 1st file name
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}"]) # basename for 2nd set of files, 1st file name

def product_task(input_file, output_parameter, shared_path, basenames):

254 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

print "input_parameter = ", input_file
print "output_parameter = ", output_parameter
print "shared_path = ", shared_path
print "basenames = ", basenames

#
Run
#
pipeline_run(verbose=0)

This produces:

>>> pipeline_run(verbose=0)
input_parameter = ('a.start', 'b.start')
output_parameter = /home/lg/src/oss/ruffus/a_vs_b.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['a', 'b']

input_parameter = ('a.start', 'c.start')
output_parameter = /home/lg/src/oss/ruffus/a_vs_c.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['a', 'c']

input_parameter = ('b.start', 'a.start')
output_parameter = /home/lg/src/oss/ruffus/b_vs_a.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['b', 'a']

input_parameter = ('b.start', 'c.start')
output_parameter = /home/lg/src/oss/ruffus/b_vs_c.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['b', 'c']

input_parameter = ('c.start', 'a.start')
output_parameter = /home/lg/src/oss/ruffus/c_vs_a.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['c', 'a']

input_parameter = ('c.start', 'b.start')
output_parameter = /home/lg/src/oss/ruffus/c_vs_b.product
shared_path = /home/lg/src/oss/ruffus
basenames = ['c', 'b']

suffix

suffix(string)

The enclosed parameter is a string which must match exactly to the end of a file name.

Used by:

• @transform

Example:

#
Transforms ``*.c`` to ``*.o``::
#

4.1. Decorators 255

ruffus Documentation, Release 2.6.3

@transform(previous_task, suffix(".c"), ".o")
def compile(infile, outfile):

pass

regex

regex(regular_expression)

The enclosed parameter is a python regular expression string, which must be wrapped in a regex indi-
cator object.

See python regular expression (re) documentation for details of regular expression syntax

Used by:

• @transform

• @subdivide

• @collate

• The deprecated @files_re

Example:

@transform(previous_task, regex(r".c$"), ".o")
def compile(infile, outfile):

pass

add_inputs

add_inputs(input_file_pattern)

The enclosed parameter(s) are pattern strings or a nested structure which is added to the input for each
job.

Used by:

• @transform

• @collate

• @subdivide

Example @transform with suffix(...)

A common task in compiling C code is to include the corresponding header file for the source.
To compile *.c to *.o, adding *.h and the common header universal.h:

@transform(["1.c", "2.c"], suffix(".c"), add_inputs([r"\1.h", "universal.h"]), ".o")
def compile(infile, outfile):

do something here
pass

The starting files names are 1.c and 2.c.
suffix(".c") matches ”.c” so \1 stands for the unmatched prefices "1" and "2"

This will result in the following functional calls:

256 Chapter 4. Reference:

http://docs.python.org/library/re.html

ruffus Documentation, Release 2.6.3

compile(["1.c", "1.h", "universal.h"], "1.o")
compile(["2.c", "2.h", "universal.h"], "2.o")

A string like universal.h in add_inputs will added as is. r"\1.h", however, per-
forms suffix substitution, with the special form r"\1" matching everything up to the suffix.
Remember to ‘escape’ r"\1" otherwise Ruffus will complain and throw an Exception to
remind you. The most convenient way is to use a python “raw” string.

Example of add_inputs(...) with regex(...)

The suffix match (suffix(...)) is exactly equivalent to the following code using regular expression (regex(...)):

@transform(["1.c", "2.c"], regex(r"^(.+)\.c$"), add_inputs([r"\1.h", "universal.h"]), r"\1.o")
def compile(infile, outfile):

do something here
pass

The suffix(..) code is much simpler but the regular expression allows more complex
substitutions.

add_inputs(...) preserves original inputs

add_inputs nests the the original input parameters in a list before adding additional depen-
dencies.

This can be seen in the following example:

@transform([["1.c", "A.c", 2]
["2.c", "B.c", "C.c", 3]],
suffix(".c"), add_inputs([r"\1.h", "universal.h"]), ".o")

def compile(infile, outfile):
do something here
pass

This will result in the following functional calls:

compile([["1.c", "A.c", 2], "1.h", "universal.h"], "1.o")
compile([["3.c", "B.c", "C.c", 3], "2.h", "universal.h"], "2.o")

The original parameters are retained unchanged as the first item in a list

inputs

inputs(input_file_pattern)

Used by:

• @transform

• @collate

• @subdivide

The enclosed single parameter is a pattern string or a nested structure which is used to construct the input
for each job.

If more than one argument is supplied to inputs, an exception will be raised.

Use a tuple or list (as in the following example) to send multiple input arguments to each job.

4.1. Decorators 257

ruffus Documentation, Release 2.6.3

Used by:

• The advanced form of @transform

inputs(...) replaces original inputs

inputs(...) allows the original input parameters to be replaced wholescale.

This can be seen in the following example:

@transform([["1.c", "A.c", 2]
["2.c", "B.c", "C.c", 3]],
suffix(".c"), inputs([r"\1.py", "docs.rst"]), ".pyc")

def compile(infile, outfile):
do something here
pass

This will result in the following functional calls:

compile(["1.py", "docs.rst"], "1.pyc")
compile(["2.py", "docs.rst"], "2.pyc")

In this example, the corresponding python files have been sneakily substituted without trace in
the place of the C source files.

mkdir

mkdir(directory_name1 , [directory_name2 , ...])

The enclosed parameter is a directory name or a sequence of directory names. These directories will be
created as part of the prerequisites of running a task.

Used by:

• @follows

Example:

@follows(mkdir("/output/directory"))
def task():

pass

touch_file

touch_file(file_name)

The enclosed parameter is a file name. This file will be touch-ed after a task is executed.

This will change the date/time stamp of the file_name to the current date/time. If the file does not
exist, an empty file will be created.

Used by:

• @posttask

Example:

@posttask(touch_file("task_completed.flag"))
@files(None, "a.1")
def do_task(input_file, output_file):

pass

258 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

output_from

output_from (file_name_string1 [, file_name_string1 , ...])

Indicates that any enclosed strings are not file names but refer to task functions.

Used by:

• @split

• @transform

• @merge

• @collate

• @subdivide

• @product

• @permutations

• @combinations

• @combinations_with_replacement

• @files

Example:

@split(["a.file", ("b.file", output_from("task1", 76, "task2"))], "*.split")
def task2(input, output):

pass

is equivalent to:

@split(["a.file", ("b.file", (task1, 76, task2))], "*.split")
def task2(input, output):

pass

combine

combine(arguments)

Warning: This is deprecated syntax.
Please do not use!
@merge and @collate are more powerful and have straightforward syntax.

Indicates that the inputs of @files_re will be collated or summarised into outputs by category. See the
Manual or :ref:‘ @collate <new_manual.collate>‘ for examples.

Used by:

• @files_re

Example:

@files_re('*.animals', # inputs = all *.animal files
r'mammals.([^.]+)', # regular expression
combine(r'\1/animals.in_my_zoo'), # single output file per species
r'\1') # species name

def capture_mammals(infiles, outfile, species):

4.1. Decorators 259

ruffus Documentation, Release 2.6.3

summarise all animals of this species
""

260 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

Core

See also:
• @originate in the Ruffus Manual
• Decorators for more decorators

4.1.3 @originate (output, [extras,...])
Purpose:

• Creates (originates) a set of starting file without dependencies from scratch (ex nihilo!)
• Only called to create files which do not exist.
• Invoked onces (a job created) per item in the output list.

Note: The first argument for the task function is the output. There is by definition no input
for @originate

Example:

from ruffus import *
@originate(["a", "b", "c", "d"], "extra")
def test(output_file, extra):

open(output_file, "w")

pipeline_run()

>>> pipeline_run()
Job = [None -> a, extra] completed
Job = [None -> b, extra] completed
Job = [None -> c, extra] completed
Job = [None -> d, extra] completed

Completed Task = test

>>> # all files exist: nothing to do
>>> pipeline_run()

>>> # delete 'a' so that it is missing
>>> import os
>>> os.unlink("a")

>>> pipeline_run()
Job = [None -> a, extra] completed

Completed Task = test

Parameters:
• output = output

– Can be a single file name or a list of files
– Each item in the list is treated as the output of a separate job

• extras = extras Any extra parameters are passed verbatim to the task function
If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also:
• @split in the Ruffus Manual
• Decorators for more decorators

4.1.4 @split (input, output, [extras,...])
Purpose:

Splits a single set of input into multiple output, where the number of output may not be
known beforehand.
Only out of date tasks (comparing input and output files) will be run

Example:

@split("big_file", '*.little_files')
def split_big_to_small(input_file, output_files):

print "input_file = %s" % input_file
print "output_file = %s" % output_file

.
will produce:

input_file = big_file
output_file = *.little_files

Parameters:
• input = tasks_or_file_names can be a:

1. (Nested) list of file name strings (as in the example above).
File names containing *[]? will be expanded as a glob.
E.g.:"a.*" => "a.1", "a.2"

2. Task / list of tasks.
File names are taken from the output of the specified task(s)

• output = output Specifies the resulting output file name(s) after string substitution
Can include glob patterns (e.g. "*.txt")

These are used only to check if the task is up to date.
Normally you would use either a glob (e.g. *.little_files as above) or a “sentinel file” to
indicate that the task has completed successfully.
You can of course do both:

@split("big_file", ["sentinel.file", "*.little_files"])
def split_big_to_small(input_file, output_files):

pass

• extras = extras Any extra parameters are passed verbatim to the task function
If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

Warning: Deprecated since Ruffus v 2.5
@split(input, output, filter = regex(...), add_inputs(...) | inputs(...), [|extras|_,...]) is a
synonym for @subdivide.

See also:
• @transform in the Ruffus Manual
• Decorators for more decorators

4.1.5 @transform(input, filter, output, [extras,...])
Purpose: Applies the task function to transform data from input to output files.

Output file names are specified from input, i.e. from the output of specified tasks, or a list of
file names, or a glob matching pattern.
String replacement occurs either through suffix matches via suffix or the formatter or regex
indicators.
Only out of date tasks (comparing input and output files) will be run

Simple Example
Transforms *.c to *.o:

@transform(input = ["1.c", "2.c"], filter = suffix(".c"), output = ".o")
def compile(infile, outfile):

pass

Same example with a regular expression:

@transform(["1.c", "2.c"], regex(r".c$"), ".o")
def compile(infile, outfile):

pass

Both result in the following function calls:

1.c -> 1.o
2.c -> 2.o
compile("1.c", "1.o")
compile("2.c", "2.o")

Escaping regular expression patterns
A string like universal.h in add_inputs will added as is. r"\1.h", however,
performs suffix substitution, with the special form r"\1" matching everything up to
the suffix. Remember to ‘escape’ r"\1" otherwise Ruffus will complain and throw an
Exception to remind you. The most convenient way is to use a python “raw” string.

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks (as in the example above). File names are taken from the output of the
specified task(s)

2. (Nested) list of file name strings.
File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = suffix(suffix_string) must be wrapped in a suffix indicator object. The end of each input file name
which matches suffix_string will be replaced by output.
Input file names which do not match suffix_string will be ignored
The non-suffix part of the match can be referred to using the "\1" pattern. This can be useful for
putting the output in different directory, for example:

@transform(["1.c", "2.c"], suffix(".c"), r"my_path/\1.o")
def compile(infile, outfile):

pass

This results in the following function calls:

1.c -> my_path/1.o
2.c -> my_path/2.o
compile("1.c", "my_path/1.o")
compile("2.c", "my_path/2.o")

For convenience and visual clarity, the "\1" can be omitted from the output parameter. However,
the "\1" is mandatory for string substitutions in additional parameters,

@transform(["1.c", "2.c"], suffix(".c"), [r"\1.o", ".o"], "Compiling \1", "verbatim")
def compile(infile, outfile):

pass

Results in the following function calls:

compile("1.c", ["1.o", "1.o"], "Compiling 1", "verbatim")
compile("2.c", ["2.o", "2.o"], "Compiling 2", "verbatim")

Since r”1” is optional for the output parameter, "\1.o" and ".o" are equivalent. However, strings
in other parameters which do not contain r”1” will be included verbatim, much like the string
"verbatim" in the above example.

• filter = regex(matching_regex) is a python regular expression string, which must be wrapped in a regex
indicator object See python regular expression (re) documentation for details of regular expression
syntax Each output file name is created using regular expression substitution with output

• filter = formatter(...) a formatter indicator object containing optionally a python regular expression (re).
• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.
If regex(matching_regex) or formatter(...)‘ is used, then substitution is first applied
to (even nested) string parameters. Other data types are passed verbatim.
For example:

@transform(["a.c", "b.c"], regex(r"(.*).c"), r"\1.o", r"\1")
def compile(infile, outfile):

pass

will result in the following function calls:

compile("a.c", "a.o", "a")
compile("b.c", "b.o", "b")

See here for more advanced uses of transform.
See also:

• @merge in the Ruffus Manual
• Decorators for more decorators

4.1.6 @merge (input, output, [extras,...])
Purpose: Merges multiple input into a single output.

Only out of date tasks (comparing input and output files) will be run
Example:

@merge(previous_task, 'all.summary')
def summarize(infiles, summary_file):

pass

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings.

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• output = output Specifies the resulting output file name(s).
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See here for more advanced uses of merging.

4.1. Decorators 261

http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/glob.html

ruffus Documentation, Release 2.6.3

262 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

For advanced users

See also:
• @subdivide in the Ruffus Manual
• Decorators for more decorators

4.1.7 @subdivide

@subdivide (input, regex(matching_regex) | formatter(matching_formatter), [inputs
(input_pattern_or_glob) | add_inputs (input_pattern_or_glob)], output, [extras,...])

Purpose:
• Subdivides a set of Inputs each further into multiple Outputs.
• Many to Even More operator
• The number of files in each Output can be set at runtime by the use of globs
• Output file names are specified using the formatter or regex indicators from input,

i.e. from the output of specified tasks, or a list of file names, or a glob matching
pattern.

• Additional inputs or dependencies can be added dynamically to the task:
add_inputs nests the the original input parameters in a list before adding
additional dependencies.
inputs replaces the original input parameters wholescale.

• Only out of date tasks (comparing input and output files) will be run.

Note: The use of split is a synonym for subdivide is deprecated.

Example:

from ruffus import *
from random import randint
from random import os

@originate(['0.start', '1.start', '2.start'])
def create_files(output_file):

with open(output_file, "w"):
pass

#
Subdivide each of 3 start files further into [NNN1, NNN2, NNN3] number of files
where NNN1, NNN2, NNN3 are determined at run time
#
@subdivide(create_files, formatter(),

"{path[0]}/{basename[0]}.*.step1", # Output parameter: Glob matches any number of output file names
"{path[0]}/{basename[0]}") # Extra parameter: Append to this for output file names

def subdivide_files(input_file, output_files, output_file_name_root):
#
IMPORTANT: cleanup rubbish from previous run first
#
for oo in output_files:

os.unlink(oo)
The number of output files is decided at run time
number_of_output_files = randint(2,4)
for ii in range(number_of_output_files):

output_file_name = "{output_file_name_root}.{ii}.step1".format(**locals())
with open(output_file_name, "w"):

pass

#
Each output of subdivide_files results in a separate job for downstream tasks
#
@transform(subdivide_files, suffix(".step1"), ".step2")
def analyse_files(input_file, output_file_name):

with open(output_file_name, "w"):
pass

pipeline_run()

>>> pipeline_run()
Job = [None -> 0.start] completed
Job = [None -> 1.start] completed
Job = [None -> 2.start] completed

Completed Task = create_files
Job = [0.start -> 0.*.step1, 0] completed
Job = [1.start -> 1.*.step1, 1] completed
Job = [2.start -> 2.*.step1, 2] completed

Completed Task = subdivide_files
Job = [0.0.step1 -> 0.0.step2] completed
Job = [0.1.step1 -> 0.1.step2] completed
Job = [0.2.step1 -> 0.2.step2] completed
Job = [1.0.step1 -> 1.0.step2] completed
Job = [1.1.step1 -> 1.1.step2] completed
Job = [1.2.step1 -> 1.2.step2] completed
Job = [1.3.step1 -> 1.3.step2] completed
Job = [2.0.step1 -> 2.0.step2] completed
Job = [2.1.step1 -> 2.1.step2] completed
Job = [2.2.step1 -> 2.2.step2] completed
Job = [2.3.step1 -> 2.3.step2] completed

Completed Task = analyse_files

Parameters:
• tasks_or_file_names can be a:

1. Task / list of tasks (as in the example above). File names are taken from the output of the
specified task(s)

2. (Nested) list of file name strings.
File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• matching_regex is a python regular expression string, which must be wrapped in a regex indicator object
See python regular expression (re) documentation for details of regular expression syntax

• matching_formatter a formatter indicator object containing optionally a python regular expression (re).
• output = output Specifies the resulting output file name(s) after string substitution

Can include glob patterns.
• input_pattern Specifies the resulting input(s) to each job. Must be wrapped in an inputs or an inputs

indicator object.
Can be a:

1. Task / list of tasks (as in the example above). File names are taken from the output of the
specified task(s)

2. (Nested) list of file name strings.
Strings are subject to regex or formatter substitution.

• extras = extras Any extra parameters are passed verbatim to the task function
If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.
Strings are subject to regex or formatter substitution.

See also:
• @transform(.., add_inputs(...)| inputs(...), ...) in the Ruffus Manual
• Decorators for more decorators

4.1.8 @transform(input, filter, replace_inputs | add_inputs, output, [extras,...]
)

Purpose: Applies the task function to transform data from input to output files.
This variant of @transform allows additional inputs or dependencies to be added dynami-
cally to the task.
Output file names are specified from input, i.e. from the output of specified tasks, or a list of
file names, or a glob matching pattern.
This variant of @transform allows additional or replacement input file names to be derived
in the same way.
String replacement occurs either through suffix matches via suffix or the formatter or regex
indicators.
It is a one to one operation.
add_inputs(...) nests the the original input parameters in a list before adding additional depen-
dencies.
inputs(...) replaces the original input parameters wholescale.
Only out of date tasks (comparing input and output files) will be run

Example of add_inputs(...)
A common task in compiling C code is to include the corresponding header file for the
source.
To compile *.c to *.o, adding *.h and the common header universal.h:

@transform(["1.c", "2.c"], suffix(".c"), add_inputs([r"\1.h", "universal.h"]), ".o")
def compile(infile, outfile):

pass

This will result in the following functional calls:

compile(["1.c", "1.h", "universal.h"], "1.o")
compile(["2.c", "2.h", "universal.h"], "2.o")

Example of inputs(...)
inputs(...) allows the original input parameters to be replaced wholescale.
This can be seen in the following example:

@transform(input = [["1.c", "A.c", 2]
["2.c", "B.c", "C.c", 3]],

filter = suffix(".c"),
replace_inputs = inputs([r"\1.py", "docs.rst"]),
output = ".pyc")

def compile(infile, outfile):
pass

This will result in the following functional calls:

compile(["1.py", "docs.rst"], "1.pyc")
compile(["2.py", "docs.rst"], "2.pyc")

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks (as in the example above). File names are taken from the output of the
specified task(s)

2. (Nested) list of file name strings.
File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = suffix(suffix_string) must be wrapped in a suffix indicator object. The end of each input file name
which matches suffix_string will be replaced by output. Thus:

@transform(input = ["a.c", "b.c"],
filter = suffix(".c"),
output = ".o")

def compile(infile, outfile):
pass

will result in the following function calls:

compile("a.c", "a.o")
compile("b.c", "b.o")

File names which do not match suffix_string will be ignored
• filter = regex(matching_regex) is a python regular expression string, which must be wrapped in a regex

indicator object See python regular expression (re) documentation for details of regular expression
syntax Each output file name is created using regular expression substitution with output

• filter = formatter(...) a formatter indicator object containing optionally a python regular expression (re).
• add_inputs = add_inputs(...) or replace_inputs = inputs(...) Specifies the resulting input(s) to each job.

Positional parameters must be disambiguated by wrapping the values in inputs(...) or an
add_inputs(...).
Named parameters can be passed the values directly.
Takes:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings. Strings will be subject to substitution. File names containing

[]? will be expanded as a glob. E.g. "a." => "a.1", "a.2"
• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.
If the regex(...) or formatter(...) parameter is used, then substitution is first applied to
(even nested) string parameters. Other data types are passed verbatim.
For example:

@transform(["a.c", "b.c"], regex(r"(.*).c"), inputs(r"\1.c", r"\1.h", "universal.h"), r"\1.o", r"\1")
def compile(infiles, outfile, file_name_root):

do something here
pass

will result in the following function calls:

compile(["1.c", "1.h", "universal.h"], "1.o", "1")
compile(["2.c", "2.h", "universal.h"], "2.o", "2")

See here for more straightforward ways to use transform.
See also:

• @collate in the Ruffus Manual
• Decorators for more decorators

4.1.9 @collate(input, filter, output, [extras,...])
Purpose:

Use filter to identify common sets of inputs which are to be grouped or collated together:
Each set of inputs which generate identical output and extras using the formatter or regex
(regular expression) filters are collated into one job.
This is a many to fewer operation.
Only out of date jobs (comparing input and output files) will be re-run.

Example: regex(r".+\.(.+)$"), "\1.summary" creates a separate summary file for each
suffix:

animal_files = "a.fish", "b.fish", "c.mammals", "d.mammals"
summarise by file suffix:
@collate(animal_files, regex(r".+\.(.+)$"), r'\1.summary')
def summarize(infiles, summary_file):

pass

1. output and optional extras parameters are passed to the functions after string substitution.
Non-string values are passed through unchanged.

2. Each collate job consists of input files which are aggregated by string substitution to
identical output and extras

3. The above example results in two jobs:
["a.fish", "b.fish" -> "fish.summary"]

["c.mammals", "d.mammals" -> "mammals.summary"]
Parameters:

• input = tasks_or_file_names can be a:
1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings (as in the example above).

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = matching_regex is a python regular expression string, which must be wrapped in a regex indicator
object See python regular expression (re) documentation for details of regular expression syntax

• filter = matching_formatter a formatter indicator object containing optionally a python regular expres-
sion (re).

• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down
the pipeline.

Example2:
Suppose we had the following files:

cows.mammals.animal
horses.mammals.animal
sheep.mammals.animal

snake.reptile.animal
lizard.reptile.animal
crocodile.reptile.animal

pufferfish.fish.animal

and we wanted to end up with three different resulting output:

cow.mammals.animal
horse.mammals.animal
sheep.mammals.animal

-> mammals.results

snake.reptile.animal
lizard.reptile.animal
crocodile.reptile.animal

-> reptile.results

pufferfish.fish.animal
-> fish.results

This is the @collate code required:

animals = ["cows.mammals.animal",
"horses.mammals.animal",
"sheep.mammals.animal",
"snake.reptile.animal",
"lizard.reptile.animal",
"crocodile.reptile.animal",
"pufferfish.fish.animal"]

@collate(animals, regex(r"(.+)\.(.+)\.animal"), r"\2.results")
\1 = species [cow, horse]
\2 = phylogenetics group [mammals, reptile, fish]
def summarize_animals_into_groups(species_file, result_file):

" ... more code here"
pass

See @merge for an alternative way to summarise files.
See also:

• @collate in the Ruffus Manual
• Use of add_inputs(...) | inputs(...) in the Ruffus Manual
• Decorators for more decorators

4.1.10 @collate(input, filter, replace_inputs | add_inputs, output, [extras,...])
Purpose: Use filter to identify common sets of inputs which are to be grouped or collated together:

Each set of inputs which generate identical output and extras using the formatter or regex
(regular expression) filters are collated into one job.
This variant of @collate allows additional inputs or dependencies to be added dynamically
to the task, with optional string substitution.
add_inputs nests the the original input parameters in a list before adding additional dependen-
cies.
inputs replaces the original input parameters wholescale.
This is a many to fewer operation.
Only out of date jobs (comparing input and output files) will be re-run.

Example of add_inputs
regex(r".*(\..+)"), "\1.summary" creates a separate summary file for each
suffix. But we also add date of birth data for each species:

animal_files = "tuna.fish", "shark.fish", "dog.mammals", "cat.mammals"
summarise by file suffix:
@collate(animal_files, regex(r".+\.(.+)$"), add_inputs(r"\1.date_of_birth"), r'\1.summary')
def summarize(infiles, summary_file):

pass

This results in the following equivalent function calls:

summarize([["shark.fish", "fish.date_of_birth"],
["tuna.fish", "fish.date_of_birth"]], "fish.summary")

summarize([["cat.mammals", "mammals.date_of_birth"],
["dog.mammals", "mammals.date_of_birth"]], "mammals.summary")

Example of add_inputs
using inputs(...) will summarise only the dates of births for each species group:

animal_files = "tuna.fish", "shark.fish", "dog.mammals", "cat.mammals"
summarise by file suffix:
@collate(animal_files, regex(r".+\.(.+)$"), inputs(r"\1.date_of_birth"), r'\1.summary')
def summarize(infiles, summary_file):

pass

This results in the following equivalent function calls:

summarize(["fish.date_of_birth"], "fish.summary")
summarize(["mammals.date_of_birth"], "mammals.summary")

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings (as in the example above).

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = matching_regex is a python regular expression string, which must be wrapped in a regex indicator
object See python regular expression (re) documentation for details of regular expression syntax

• filter = matching_formatter a formatter indicator object containing optionally a python regular expres-
sion (re).

• add_inputs = add_inputs(...) or replace_inputs = inputs(...) Specifies the resulting input(s) to each job.
Positional parameters must be disambiguated by wrapping the values in inputs(...) or an
add_inputs(...).
Named parameters can be passed the values directly.
Takes:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings. Strings will be subject to substitution. File names containing

[]? will be expanded as a glob. E.g. "a." => "a.1", "a.2"
• output = output Specifies the resulting output file name(s).
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
See @collate for more straightforward ways to use collate.
See also:

• @graphviz in the Ruffus Manual
• Decorators for more decorators

4.1.11 @graphviz

@graphviz (graphviz_parameters,...])

Contributed by Sean Davis, with improved syntax via Jake Biesinger
Purpose: Customise the graphic for each task in printed flowcharts by adding graphviz attributes,

(URL, shape, colour) to that node.
• This allows HTML formatting in the task names (using the label parameter as in the

following example). HTML labels must be enclosed in < and >. E.g.

label = "<Line
 wrapped task_name()>"

• You can also opt to keep the task name and wrap it with a prefix and suffix:

label_suffix = "??? ", label_prefix = ": What is this?"

• The URL attribute allows the generation of clickable svg, and also client / server side
image maps usable in web pages. See Graphviz documentation

Example:

@graphviz(URL='"http://cnn.com"', fillcolor = '"#FFCCCC"',
color = '"#FF0000"', pencolor='"#FF0000"', fontcolor='"#4B6000"',
label_suffix = "???", label_prefix = "What is this?
 ",
label = "<What isthis>",
shape= "component", height = 1.5, peripheries = 5,
style="dashed")

def Up_to_date_task2(infile, outfile):
pass

Can use dictionary if you wish...
graphviz_params = {"URL":"http://cnn.com", "fontcolor": '"#FF00FF"'}
@graphviz(**graphviz_params)
def myTask(input,output):

pass

Parameters:
• named graphviz_parameters

Including among others:
– URL (e.g. "www.ruffus.org.uk")
– fillcolor
– color
– pencolor
– fontcolor
– label_suffix (appended to task name)
– label_prefix (precedes task name)
– label (replaces task name)
– shape (e.g. "component", "box", "diamond", "doubleoctagon" etc., see

graphviz)
– height
– peripheries (Number of borders)
– style (e.g. "solid", "wedged", "dashed" etc., see graphviz)

Colours may specified as ’"#FFCCCC"’, ’red’, ’red:blue’, ’/bugn9/7’ etc.
see color names and colour schemes

See also:
• @mkdir in the Ruffus Manual
• @follows(mkdir(“dir”)) specifies the creation of a single directory as a task pre-requisite.
• Decorators for more decorators

4.1.12 @mkdir(input, filter, output)
Purpose:

• Prepares directories to receive Output files
• Used when Output path names are generated at runtime from Inputs. mkdir can

make sure these runtime specified paths exist.
• Directory names are generated from Input using string substitution via formatter(),

suffix() or regex().
• Behaves essentially like @transform but with its own (internal) function which

does the actual work of making a directory
• Does not invoke the host task function to which it is attached
• Makes specified directories using os.makedirs
• Multiple directories can be created in a list

Note: Only missing directories are created.
In other words, the same directory can be specified multiple times safely without, for
example, being recreated repeatedly.
Sometimes, for pipelines with multiple entry points, this is the only way to make sure that
certain working or output directories are always created or available before the pipeline
runs.

Simple Example
Creates multiple directories per job to hold the results of @transform

from ruffus import *

initial files
@originate(['A.start',

'B.start'])
def create_initial_files(output_file):

with open(output_file, "w") as oo: pass

create files without making directories -> ERROR
@transform(create_initial_files,

formatter(),
["{path[0]}/{basename[0]}/processed.txt",
"{path[0]}/{basename[0]}.tmp/tmp.processed.txt"])

def create_files_without_mkdir(input_file, output_files):
open(output_files[0], "w")
open(output_files[1], "w")

create files after making corresponding directories
@mkdir(create_initial_files,

formatter(),
["{path[0]}/{basename[0]}", # create directory
"{path[0]}/{basename[0]}.tmp"]) # create directory.tmp

@transform(create_initial_files,
formatter(),
["{path[0]}/{basename[0]}/processed.txt",
"{path[0]}/{basename[0]}.tmp/tmp.processed.txt"])

def create_files_with_mkdir(input_file, output_files):
open(output_files[0], "w")
open(output_files[1], "w")

pipeline_run([create_files_without_mkdir])
pipeline_run([create_files_with_mkdir])

Running without making the directories first gives errors:

>>> pipeline_run([create_files_without_mkdir])
Job = [None -> A.start] completed
Job = [None -> B.start] completed

Completed Task = create_initial_files

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/ruffus/task.py", line 3738, in pipeline_run
raise job_errors

ruffus.ruffus_exceptions.RethrownJobError:

Original exception:

>>> # Exception #1
>>> # 'exceptions.IOError([Errno 2] No such file or directory: 'A/processed.txt')' raised in ...
>>> # Task = def create_files_without_mkdir(...):
>>> # Job = [A.start -> [processed.txt, tmp.processed.txt]]

Running after making the directories first:

>>> pipeline_run([create_files_with_mkdir])
Job = [None -> A.start] completed
Job = [None -> B.start] completed

Completed Task = create_initial_files
Make directories [A, A.tmp] completed
Make directories [B, B.tmp] completed

Completed Task = (mkdir 1) before create_files_with_mkdir
Job = [A.start -> [processed.txt, tmp.processed.txt]] completed
Job = [B.start -> [processed.txt, tmp.processed.txt]] completed

Completed Task = create_files_with_mkdir

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks (as in the example above). File names are taken from the output of the
specified task(s)

2. (Nested) list of file name strings.
File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = suffix(suffix_string) must be wrapped in a suffix indicator object. The end of each input file name
which matches suffix_string will be replaced by output.
Input file names which do not match suffix_string will be ignored
The non-suffix part of the match can be referred to using the r"\1" pattern. This can be useful for
putting the output in different directory, for example:

@mkdir(["1.c", "2.c"], suffix(".c"), r"my_path/\1.o")
def compile(infile, outfile):

pass

This results in the following function calls:

1.c -> my_path/1.o
2.c -> my_path/2.o
compile("1.c", "my_path/1.o")
compile("2.c", "my_path/2.o")

For convenience and visual clarity, the "\1" can be omitted from the output parameter. However,
the "\1" is mandatory for string substitutions in additional parameters,

@mkdir(["1.c", "2.c"], suffix(".c"), [r"\1.o", ".o"], "Compiling \1", "verbatim")
def compile(infile, outfile):

pass

Results in the following function calls:

compile("1.c", ["1.o", "1.o"], "Compiling 1", "verbatim")
compile("2.c", ["2.o", "2.o"], "Compiling 2", "verbatim")

Since r”1” is optional for the output parameter, "\1.o" and ".o" are equivalent. However, strings
in other parameters which do not contain r”1” will be included verbatim, much like the string
"verbatim" in the above example.

• filter = regex(matching_regex) is a python regular expression string, which must be wrapped in a regex
indicator object See python regular expression (re) documentation for details of regular expression
syntax Each output file name is created using regular expression substitution with output

• filter = formatter(...) a formatter indicator object containing optionally a python regular expression (re).
• output = output Specifies the directories to be created after string substitution

See also:
• @jobs_limit in the Ruffus Manual
• Decorators for more decorators

4.1.13 @jobs_limit

@jobs_limit (maximum_num_of_jobs, [name])

Purpose:
Manages the resources available for a task.
Limits the number of concurrent jobs which can be run in parallel for this task
Overrides the value for multiprocess in pipeline_run
If an optional name is given, the same limit is shared across all tasks with the same
@job_limit name.

Parameters:
• maximum_num_of_jobs The maximum number of concurrent jobs for this task. Must be an integer

number greater than or equal to 1.
• name Optional name for the limit. All tasks with the same name share the same limit if they

are running concurrently.
Example

from ruffus import *

make list of 10 files
@split(None, "*.stage1")
def make_files(input_file, output_files):

for i in range(10):
open("%d.stage1" % i, "w")

@jobs_limit(2)
@transform(make_files, suffix(".stage1"), ".stage2")
def stage1(input_file, output_file):

open(output_file, "w")

@transform(stage1, suffix(".stage2"), ".stage3")
def stage2(input_file, output_file):

open(output_file, "w")

pipeline_run([stage2], multiprocess = 5)

will run the 10 jobs of stage1 2 at a time, while ‘‘ stage2‘‘ will run 5 at a time (from
multiprocess = 5):

See also:
• @posttask in the Ruffus Manual
• Decorators for more decorators

4.1.14 @posttask

@posttask (function | touch_file(file_name))

Purpose: Calls functions to signal the completion of each task
Example:

from ruffus import *

def task_finished():
print "hooray"

@posttask(task_finished)
@files(None, "a.1")
def create_if_necessary(input_file, output_file):

open(output_file, "w")

pipeline_run([create_if_necessary])

Parameters:
• function: function() will be called when the ruffus passes through a task.

This may happen even if all of the jobs are up-to-date: when a upstream task is out-of-date, and the
execution passes through this point in the pipeline

• file_name Files to be touch-ed after the task is executed.
This will change the date/time stamp of the file_name to the current date/time. If the file does
not exist, an empty file will be created.
Requires to be wrapped in a touch_file indicator object:

from ruffus import *

@posttask(touch_file("task_completed.flag"))
@files(None, "a.1")
def create_if_necessary(input_file, output_file):

open(output_file, "w")

pipeline_run([create_if_necessary])

See also:
• @active_if in the Ruffus Manual
• Decorators for more decorators

4.1.15 @active_if

@active_if (on_or_off1, [on_or_off2,...])

Purpose:
• Switches tasks on and off at run time depending on its parameters
• Evaluated each time pipeline_run, pipeline_printout or
pipeline_printout_graph is called.

• The Design and initial implementation were contributed by Jacob Biesinger
• Dormant tasks behave as if they are up to date and have no output.

Example:

from ruffus import *
run_if_true_1 = True
run_if_true_2 = False
run_if_true_3 = True

#
task1
#
@originate(['a.foo', 'b.foo'])
def create_files(outfile):

"""
create_files
"""
open(outfile, "w").write(outfile + "\n")

#
Only runs if all three run_if_true conditions are met
#
@active_if determines if task is active
@active_if(run_if_true_1, lambda: run_if_true_2)
@active_if(run_if_true_3)
@transform(create_files, suffix(".foo"), ".bar")
def this_task_might_be_inactive(infile, outfile):

open(outfile, "w").write("%s -> %s\n" % (infile, outfile))

@active_if switches off task because run_if_true_2 == False
pipeline_run(verbose = 3)

@active_if switches on task because all run_if_true conditions are met
run_if_true_2 = True
pipeline_run(verbose = 3)

Produces the following output:

>>> # @active_if switches off task "this_task_might_be_inactive" because run_if_true_2 == False
>>> pipeline_run(verbose = 3)

Task enters queue = create_files
create_files

Job = [None -> a.foo] Missing file [a.foo]
Job = [None -> b.foo] Missing file [b.foo]
Job = [None -> a.foo] completed
Job = [None -> b.foo] completed

Completed Task = create_files
Inactive Task = this_task_might_be_inactive

>>> # @active_if switches on task "this_task_might_be_inactive" because all run_if_true conditions are met
>>> run_if_true_2 = True
>>> pipeline_run(verbose = 3)

Task enters queue = this_task_might_be_inactive

Job = [a.foo -> a.bar] Missing file [a.bar]
Job = [b.foo -> b.bar] Missing file [b.bar]
Job = [a.foo -> a.bar] completed
Job = [b.foo -> b.bar] completed

Completed Task = this_task_might_be_inactive

Parameters:
• on_or_off : A comma separated list of boolean conditions. These can be values, functions or callable

objects which return True / False
Multiple @active_if decorators can be stacked for clarity as in the example

See also:
• @follows in the Ruffus Manual
• Decorators for more decorators

Note: Only missing directories are created.
In other words, the same directory can be specified multiple times safely without, for example, being recreated
repeatedly. Sometimes, for pipelines with multiple entry points, this is the only way to make sure that certain
working or output directories are always created or available before the pipeline runs.

4.1.16 @follows

@follows(task | “task_name” | mkdir (directory_name), [more_tasks, ...])

Purpose:
Indicates either

• task dependencies
• that the task requires a directory to be created first if necessary. (Existing directories

will not be overwritten)
Example:

def task1():
print "doing task 1"

@follows(task1)
def task2():

print "doing task 2"

Parameters:
• task: a list of tasks which have to be run before this function
• “task_name”: Dependencies can be quoted function names. Quoted function names allow dependencies

to be added before the function is defined.
Functions in other modules need to be fully qualified.

• directory_name: Directories which need to be created (only if they don’t exist) before the task is run can
be specified via a mkdir indicator object:

@follows(task_x, mkdir("/output/directory") ...)
def task():

pass

4.1. Decorators 263

http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://docs.python.org/library/glob.html
http://www.graphviz.org/doc/info/attrs.html
http://www.graphviz.org/content/output-formats#dimap
http://www.graphviz.org/doc/info/shapes.html
http://www.graphviz.org/doc/info/attrs.html#k:style
http://www.graphviz.org/doc/info/attrs.html#k:color
http://www.graphviz.org/doc/info/colors.html
http://docs.python.org/2/library/os.html#os.makedirs
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html

ruffus Documentation, Release 2.6.3

264 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

Combinatorics

See also:
• @product in the Ruffus Manual
• Decorators for more decorators

4.1.17 @product(input, filter, [input2, filter2, ...], output, [extras,...])
Purpose:

Generates the Cartesian product, i.e. all vs all comparisons, between multiple sets of
input (e.g. A B C D, and X Y Z),
The effect is analogous to the python itertools function of the same name, i.e. a nested
for loop.

>>> from itertools import product
>>> # product('ABC', 'XYZ') --> AX AY AZ BX BY BZ CX CY CZ
>>> ["".join(a) for a in product('ABC', 'XYZ')]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

Only out of date tasks (comparing input and output files) will be run
output file names and strings in the extra parameters are generated by string replacement
via the formatter() filter from the input. This can be, for example, a list of file names or
the output of up stream tasks. . The replacement strings require an extra level of nesting
to refer to parsed components.

1. The first level refers to which set in each tuple of input.
2. The second level refers to which input file in any particular set of input.

This will be clear in the following example:
Example:

Calculates the @product of A,B and P,Q and X, Y files
If input is three sets of file names

set1 = ['a.start', # 0
'b.start'])

set2 = ['p.start', # 1
'q.start'])

set3 = [['x.1_start', 'x.2_start'], # 2
['y.1_start', 'y.2_start']]

The first job of:

@product(input = set1, filter = formatter(),
input2 = set2, filter2 = formatter(),
input3 = set2, filter3 = formatter(),
...)

Will be

One from each set
['a.start']
versus
['p.start']
versus
['x.1_start', 'x.2_start'],

First level of nesting (one list of files from each set):

['a.start'] # [0]
['p.start'] # [1]
['x.1_start', 'x.2_start'], # [2]

Second level of nesting (one file):

'a.start' # [0][0]
'p.start' # [1][0]
'x.1_start' # [2][0]

Parse filename without suffix

'a' # {basename[0][0]}
'p' # {basename[1][0]}
'x' # {basename[2][0]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

Three sets of initial files
@originate(['a.start', 'b.start'])
def create_initial_files_ab(output_file):

with open(output_file, "w") as oo: pass

@originate(['p.start', 'q.start'])
def create_initial_files_pq(output_file):

with open(output_file, "w") as oo: pass

@originate([['x.1_start', 'x.2_start'],
['y.1_start', 'y.2_start']])

def create_initial_files_xy(output_files):
for o in output_files:

with open(o, "w") as oo: pass

@product
@product(create_initial_files_ab, # Input

formatter("(.start)$"), # match input file set # 1

create_initial_files_pq, # Input
formatter("(.start)$"), # match input file set # 2

create_initial_files_xy, # Input
formatter("(.start)$"), # match input file set # 3

"{path[0][0]}/" # Output Replacement string
"{basename[0][0]}_vs_" #
"{basename[1][0]}_vs_" #
"{basename[2][0]}.product", #

"{path[0][0]}", # Extra parameter: path for 1st set of files, 1st file name

["{basename[0][0]}", # Extra parameter: basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
"{basename[2][0]}", # 3rd
])

def product_task(input_file, output_parameter, shared_path, basenames):
print "# basenames = ", " ".join(basenames)
print "input_parameter = ", input_file
print "output_parameter = ", output_parameter, "\n"

#
Run
#
#pipeline_printout(verbose=6)
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

basenames = a p x
input_parameter = ('a.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_p_vs_x.product

basenames = a p y
input_parameter = ('a.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_p_vs_y.product

basenames = a q x
input_parameter = ('a.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/a_vs_q_vs_x.product

basenames = a q y
input_parameter = ('a.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/a_vs_q_vs_y.product

basenames = b p x
input_parameter = ('b.start', 'p.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_p_vs_x.product

basenames = b p y
input_parameter = ('b.start', 'p.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_p_vs_y.product

basenames = b q x
input_parameter = ('b.start', 'q.start', 'x.start')
output_parameter = /home/lg/temp/b_vs_q_vs_x.product

basenames = b q y
input_parameter = ('b.start', 'q.start', 'y.start')
output_parameter = /home/lg/temp/b_vs_q_vs_y.product

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings.

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = formater(...) a formatter indicator object containing optionally a python regular expression (re).
Additional input and filter as needed:

• input2 = tasks_or_file_names
• filter2 = formater(...)
• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also:
• @permutations in the Ruffus Manual
• Decorators for more decorators

4.1.18 @permutations(input, filter, tuple_size, output, [extras,...])
Purpose:

Generates the permutations, between all the elements of a set of input (e.g. A B C D),
The effect is analogous to the python itertools function of the same name:

>>> from itertools import permutations
>>> # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
>>> ["".join(a) for a in permutations("ABCD", 2)]
['AB', 'AC', 'AD', 'BA', 'BC', 'BD', 'CA', 'CB', 'CD', 'DA', 'DB', 'DC']

Only out of date tasks (comparing input and output files) will be run
output file names and strings in the extra parameters are generated by string replacement
via the formatter() filter from the input. This can be, for example, a list of file names or
the output of up stream tasks. . The replacement strings require an extra level of nesting
to refer to parsed components.

1. The first level refers to which set in each tuple of input.
2. The second level refers to which input file in any particular set of input.

This will be clear in the following example:
Example:

Calculate the @permutations of A,B,C,D files
If input is four pairs of file names

input_files = [['A.1_start', 'A.2_start'], # 0
['B.1_start', 'B.2_start'], # 1
['C.1_start', 'C.2_start'], # 2
['D.1_start', 'D.2_start']] # 3

The first job of:

@permutations(input_files, formatter(), 2, ...)

Will be

Two file pairs at a time
['A.1_start', 'A.2_start'], # 0
versus
['B.1_start', 'B.2_start'], # 1

First level of nesting:

['A.1_start', 'A.2_start'] # [0]
['B.1_start', 'B.2_start'] # [1]

Second level of nesting:

'A.2_start' # [0][1]
'B.2_start' # [1][1]

Parse filename without suffix

'A' # {basename[0][1]}
'B' # {basename[1][1]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

@permutations
@permutations(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 2 at a time
2,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}.permutations",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
])

def permutations_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings.

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = formater(...) a formatter indicator object containing optionally a python regular expression (re).
• tuple_size = N Select N elements at a time.
• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also:
• @combinations in the Ruffus Manual
• Decorators for more decorators

4.1.19 @combinations(input, filter, tuple_size, output, [extras,...])
Purpose:

Generates the combinations, between all the elements of a set of input (e.g. A B C D),
i.e. r-length tuples of input elements with no repeated elements (not A A) and where
order of the tuples is irrelevant (either A B or B A, not both).
The effect is analogous to the python itertools function of the same name:

>>> from itertools import combinations
>>> # combinations('ABCD', 3) --> ABC ABD ACD BCD
>>> ["".join(a) for a in combinations("ABCD", 3)]
['ABC', 'ABD', 'ACD', 'BCD']

Only out of date tasks (comparing input and output files) will be run
output file names and strings in the extra parameters are generated by string replacement
via the formatter() filter from the input. This can be, for example, a list of file names or
the output of up stream tasks. . The replacement strings require an extra level of nesting
to refer to parsed components.

1. The first level refers to which set in each tuple of input.
2. The second level refers to which input file in any particular set of input.

This will be clear in the following example:
Example:

Calculate the @combinations of A,B,C,D files
If input is four pairs of file names

input_files = [['A.1_start', 'A.2_start'], # 0
['B.1_start', 'B.2_start'], # 1
['C.1_start', 'C.2_start'], # 2
['D.1_start', 'D.2_start']] # 3

The first job of:

@combinations(input_files, formatter(), 3, ...)

Will be

Three file pairs at a time
['A.1_start', 'A.2_start'], # 0
versus
['B.1_start', 'B.2_start'], # 1
versus
['C.1_start', 'c.2_start'], # 2

First level of nesting:

['A.1_start', 'A.2_start'] # [0]
['B.1_start', 'B.2_start'] # [1]
['C.1_start', 'C.2_start'] # [2]

Second level of nesting:

'A.2_start' # [0][1]
'B.2_start' # [1][1]
'C.2_start' # [2][1]

Parse filename without suffix

'A' # {basename[0][1]}
'B' # {basename[1][1]}
'C' # {basename[2][1]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

@combinations
@combinations(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 3 at a time
3,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}_vs_"
"{basename[2][1]}.combinations",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2nd
"{basename[2][0]}", # 3rd
])

def combinations_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - B - C
A - B - D
A - C - D
B - C - D

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings.

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = formater(...) a formatter indicator object containing optionally a python regular expression (re).
• tuple_size = N Select N elements at a time.
• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

See also:
• @combinations_with_replacement in the Ruffus Manual
• Decorators for more decorators

4.1.20 @combinations_with_replacement(input, filter, tuple_size, output, [ex-
tras,...])

Purpose:
Generates the combinations_with_replacement, between all the elements of a set of
input (e.g. A B C D), i.e. r-length tuples of input elements with no repeated elements (A
A) and where order of the tuples is irrelevant (either A B or B A, not both).
The effect is analogous to the python itertools function of the same name:

>>> from itertools import combinations_with_replacement
>>> # combinations_with_replacement('ABCD', 2) --> AA AB AC AD BB BC BD CC CD DD
>>> ["".join(a) for a in combinations_with_replacement('ABCD', 2)]
['AA', 'AB', 'AC', 'AD', 'BB', 'BC', 'BD', 'CC', 'CD', 'DD']

Only out of date tasks (comparing input and output files) will be run
output file names and strings in the extra parameters are generated by string replacement
via the formatter() filter from the input. This can be, for example, a list of file names or
the output of up stream tasks. . The replacement strings require an extra level of nesting
to refer to parsed components.

1. The first level refers to which set in each tuple of input.
2. The second level refers to which input file in any particular set of input.

This will be clear in the following example:
Example:

If input is four pairs of file names

input_files = [['A.1_start', 'A.2_start'],
['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']]

The first job of:

@combinations_with_replacement(input_files, formatter(), 3, ...)

Will be

Two file pairs at a time
['A.1_start', 'A.2_start'], # 0
versus itself
['A.1_start', 'A.2_start'], # 1

First level of nesting:

['A.1_start', 'A.2_start'] # [0]
['A.1_start', 'A.2_start'] # [1]

Second level of nesting:

'A.2_start' # [0][1]
'A.2_start' # [1][1]

Parse filename without suffix

'A' # {basename[0][1]}
'A' # {basename[1][1]}

Python code:

from ruffus import *
from ruffus.combinatorics import *

initial file pairs
@originate([['A.1_start', 'A.2_start'],

['B.1_start', 'B.2_start'],
['C.1_start', 'C.2_start'],
['D.1_start', 'D.2_start']])

def create_initial_files_ABCD(output_files):
for output_file in output_files:

with open(output_file, "w") as oo: pass

@combinations_with_replacement
@combinations_with_replacement(create_initial_files_ABCD, # Input

formatter(), # match input files

tuple of 2 at a time
2,

Output Replacement string
"{path[0][0]}/"
"{basename[0][1]}_vs_"
"{basename[1][1]}.combinations_with_replacement",

Extra parameter: path for 1st set of files, 1st file name
"{path[0][0]}",

Extra parameter
["{basename[0][0]}", # basename for 1st set of files, 1st file name
"{basename[1][0]}", # 2rd
])

def combinations_with_replacement_task(input_file, output_parameter, shared_path, basenames):
print " - ".join(basenames)

#
Run
#
pipeline_run(verbose=0)

This results in:

>>> pipeline_run(verbose=0)
A - A
A - B
A - C
A - D
B - B
B - C
B - D
C - C
C - D
D - D

Parameters:
• input = tasks_or_file_names can be a:

1. Task / list of tasks. File names are taken from the output of the specified task(s)
2. (Nested) list of file name strings.

File names containing *[]? will be expanded as a glob. E.g.:"a.*" => "a.1",
"a.2"

• filter = formater(...) a formatter indicator object containing optionally a python regular expression (re).
• tuple_size = N Select N elements at a time.
• output = output Specifies the resulting output file name(s) after string substitution
• extras = extras Any extra parameters are passed verbatim to the task function

If you are using named parameters, these can be passed as a list, i.e. extras= [...]
Any extra parameters are consumed by the task function and not forwarded further down the pipeline.

4.1. Decorators 265

http://docs.python.org/2/library/itertools.html#itertools.product
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/2/library/itertools.html#itertools.permutations
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/2/library/itertools.html#itertools.combinations
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html
http://docs.python.org/2/library/itertools.html#itertools.combinations_with_replacement
http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html

ruffus Documentation, Release 2.6.3

266 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

Esoteric

See also:
• @files in the Ruffus Manual
• Decorators for more decorators

4.1.21 Generating parameters on the fly for @files

@files (custom_function)

Purpose:
Uses a custom function to generate sets of parameters to separate jobs which can run in
parallel.
The first two parameters in each set represent the input and output which are used to see
if the job is out of date and needs to be (re-)run.
By default, out of date checking uses input/output file timestamps. (On some file systems,
timestamps have a resolution in seconds.) See @check_if_uptodate() for alternatives.

Example:

from ruffus import *
def generate_parameters_on_the_fly():

parameters = [
['input_file1', 'output_file1', 1, 2], # 1st job
['input_file2', 'output_file2', 3, 4], # 2nd job
['input_file3', 'output_file3', 5, 6], # 3rd job

]
for job_parameters in parameters:

yield job_parameters

@files(generate_parameters_on_the_fly)
def parallel_io_task(input_file, output_file, param1, param2):

pass

pipeline_run([parallel_task])

is the equivalent of calling:

parallel_io_task('input_file1', 'output_file1', 1, 2)
parallel_io_task('input_file2', 'output_file2', 3, 4)
parallel_io_task('input_file3', 'output_file3', 5, 6)

Parameters:
• custom_function: Generator function which yields each time a complete set of parameters

for one job
Checking if jobs are up to date: Strings in input and output (including in nested sequences)

are interpreted as file names and used to check if jobs are up-to-date.
See above for more details

See also:
• @check_if_uptodate in the Ruffus Manual
• Decorators for more decorators

4.1.22 @check_if_uptodate

@check_if_uptodate (dependency_checking_function)

Purpose: Checks to see if a job is up to date, and needs to be run.
Usually used in conjunction with @parallel()

Example:

from ruffus import *
import os
def check_file_exists(input_file, output_file):

if not os.path.exists(output_file):
return True, "Missing file %s" % output_file

else:
return False, "File %s exists" % output_file

@parallel([[None, "a.1"]])
@check_if_uptodate(check_file_exists)
def create_if_necessary(input_file, output_file):

open(output_file, "w")

pipeline_run([create_if_necessary])

Is equivalent to:

from ruffus import *
@files(None, "a.1")
def create_if_necessary(input_file, output_file):

open(output_file, "w")

pipeline_run([create_if_necessary])

Both produce the same output:

Task = create_if_necessary
Job = [null, "a.1"] completed

Parameters:
• dependency_checking_function: returns two parameters: if job needs to be run, and a message explain-

ing why
dependency_checking_func() needs to handle the same number of parameters as the task function
e.g. input_file and output_file above.

See also:
• @parallel in the Ruffus Manual
• Decorators for more decorators

4.1.23 @parallel

@parallel ([[job_params, ...], [job_params, ...]...] | parameter_generating_function)

Purpose: To apply the (task) function to a set of parameters in parallel without file dependency
checking.
Most useful allied to @check_if_uptodate()

Example:

from ruffus import *
parameters = [

['A', 1, 2], # 1st job
['B', 3, 4], # 2nd job
['C', 5, 6], # 3rd job

]
@parallel(parameters)
def parallel_task(name, param1, param2):

sys.stderr.write(" Parallel task %s: " % name)
sys.stderr.write("%d + %d = %d\\n" % (param1, param2, param1 + param2))

pipeline_run([parallel_task])

Parameters:
• job_params: Requires a sequence of parameters, one set for each job.

Each set of parameters can be one or more items in a sequence which will be passed to the decorated
task function iteratively (or in parallel)
For example:

parameters = [
['A', 1, 2], # 1st job
['B', 3, 4], # 2nd job
['C', 5, 6], # 3rd job

]
@parallel(parameters)
def parallel_task(name, param1, param2):

pass

Will result in the following function calls:

parallel_task('A', 1, 2)
parallel_task('B', 3, 4)
parallel_task('C', 5, 6)

• parameter_generating_function
1. A generator yielding set of parameters (as above) in turn and on the fly
2. A function returning a sequence of parameter sets, as above

4.1. Decorators 267

ruffus Documentation, Release 2.6.3

268 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

Deprecated

See also:
• @files (deprecated) in the Ruffus Manual
• Decorators for more decorators

4.1.24 @files

@files (input1, output1, [extra_parameters1, ...])

@files for single jobs

Purpose: Provides parameters to run a task.
The first two parameters in each set represent the input and output which are used to see if the
job is out of date and needs to be (re-)run.
By default, out of date checking uses input/output file timestamps. (On some file systems,
timestamps have a resolution in seconds.) See @check_if_uptodate() for alternatives.

Example:

from ruffus import *
@files('a.1', 'a.2', 'A file')
def transform_files(infile, outfile, text):

pass
pipeline_run([transform_files])

If a.2 is missing or was created before a.1, then the following will be called:

transform_files('a.1', 'a.2', 'A file')

Parameters:
• input Input file names
• output Output file names

• extra_parameters optional extra_parameters are passed verbatim to each job.
Checking if jobs are up to date: Strings in input and output (including in nested sequences)

are interpreted as file names and used to check if jobs are up-to-date.
See above for more details

@files (((input, output, [extra_parameters,...]), (...), ...))

@files in parallel

Purpose:
Passes each set of parameters to separate jobs which can run in parallel
The first two parameters in each set represent the input and output which are used to see
if the job is out of date and needs to be (re-)run.
By default, out of date checking uses input/output file timestamps. (On some file systems,
timestamps have a resolution in seconds.) See @check_if_uptodate() for alternatives.

Example:

from ruffus import *
parameters = [

['a.1', 'a.2', 'A file'], # 1st job
['b.1', 'b.2', 'B file'], # 2nd job

]

@files(parameters)
def parallel_io_task(infile, outfile, text):

pass
pipeline_run([parallel_io_task])

is the equivalent of calling:

parallel_io_task('a.1', 'a.2', 'A file')
parallel_io_task('b.1', 'b.2', 'B file')

Parameters:
• input Input file names
• output Output file names
• extra_parameters optional extra_parameters are passed verbatim to each job.

Checking if jobs are up to date:
1. Strings in input and output (including in nested sequences) are interpreted as file

names and used to check if jobs are up-to-date.
2. In the absence of input files (e.g. input is None), the job will run if any output file

is missing.
3. In the absence of output files (e.g. output is None), the job will always run.
4. If any of the output files is missing, the job will run.
5. If any of the input files is missing when the job is run, a MissingInputFileError

exception will be raised.
See also:

• Decorators for more decorators

4.1.25 @files_re

@files_re (tasks_or_file_names, matching_regex, [input_pattern], output_pattern, [ex-
tra_parameters,...])

Legacy design now deprecated. We suggest using @transform() instead

Purpose:
All singing, all dancing decorator which can do everything that @merge() and @trans-
form() can do.
Applies the task function to transform data from input to output files.
Output file names are determined from tasks_or_file_names, i.e. from the output of
specified tasks, or a list of file names, using regular expression pattern substitutions.
Only out of date tasks (comparing input and output files) will be run.

Example:

from ruffus import *
#
convert all files ending in ".1" into files ending in ".2"
#
@files_re('*.1', '(.*).1', r'\1.2')
def transform_func(infile, outfile):

open(outfile, "w").write(open(infile).read() + "\nconverted\n")

pipeline_run([task_re])

If the following files are present a.1, b.1, c.1, this will result in the following function calls:

transform_func("a.1", "a.2")
transform_func("b.1", "b.2")
transform_func("c.1", "c.2")

Parameters:
• tasks_or_file_names can be a:

1. Task / list of tasks (as in the example above). File names are taken from the output of the
specified task(s)

2. (Nested) list of file name strings.
File names containing *[]? will be expanded as a glob . E.g.:"a.*" => "a.1",
"a.2"

• matching_regex a python regular expression string.

See python regular expression (re) documentation for details of regular expression syntax
Each output file name is created using regular expression substitution with output_pattern

• input_pattern Optionally specifies the resulting input file name(s).
• output_pattern Specifies the resulting output file name(s).
• [extra_parameters, ...] Any extra parameters are passed to the task function.

Regular expression substitution is first applied to (even nested) string parameters.
Other data types are passed verbatim.

For example:

from ruffus import *
#
convert all files ending in ".1" into files ending in ".2"
#
@files_re('*.1', '(.*).1', r'\1.2', [r'\1', 55], 17)
def transform_func(infile, outfile, extras, extra3):

extra1, extra2 = extras
open(outfile, "w").write(open(infile).read() + "\nconverted%s\n" % (extra1, extra2, extra3))

pipeline_run([transform_func])

If the following files are present a.1, b.1, c.1, this will result in the following function calls:

transform_func("a.1", "a.2", ["a", 55], 17)
transform_func("b.1", "b.2", ["b", 55], 17)
transform_func("c.1", "c.2", ["c", 55], 17)

4.1. Decorators 269

http://docs.python.org/library/glob.html
http://docs.python.org/library/re.html

ruffus Documentation, Release 2.6.3

4.2 Modules:

4.2.1 ruffus.Task

Decorators

Basic Task decorators are:

@follows()

and

@files()

Task decorators include:

@split()

@transform()

@merge()

@posttask()

More advanced users may require:

@transform()

@collate()

@parallel()

@check_if_uptodate()

@files_re()

Pipeline functions

pipeline_run

ruffus.task.pipeline_run(target_tasks, forcedtorun_tasks=[], multiprocess=1, log-
ger=stderr_logger, gnu_make_maximal_rebuild_mode=True)

Run pipelines.

Parameters

• target_tasks – targets task functions which will be run if they are out-of-date

• forcedtorun_tasks – task functions which will be run whether or not they are out-of-date

• multiprocess – The number of concurrent jobs running on different processes.

• multithread – The number of concurrent jobs running as different threads. If > 1, ruffus
will use multithreading instead of multiprocessing (and ignore the multiprocess parameter).
Using multi threading is particularly useful to manage high performance clusters which
otherwise are prone to “processor storms” when large number of cores finish jobs at the
same time. (Thanks Andreas Heger)

• logger (logging objects) – Where progress will be logged. Defaults to stderr output.

• verbose –

– level 0 : nothing

270 Chapter 4. Reference:

http://docs.python.org/library/logging.html

ruffus Documentation, Release 2.6.3

– level 1 : Out-of-date Task names

– level 2 : All Tasks (including any task function docstrings)

– level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation

– level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings

– level 5 : All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks)

– level 6 : All jobs in All Tasks whether out of date or not

– level 10: logs messages useful only for debugging ruffus pipeline code

• touch_files_only – Create or update input/output files only to simulate running the pipeline.
Do not run jobs. If set to CHECKSUM_REGENERATE, will regenerate the checksum
history file to reflect the existing i/o files on disk.

• exceptions_terminate_immediately – Exceptions cause immediate termination rather than
waiting for N jobs to finish where N = multiprocess

• log_exceptions – Print exceptions to logger as soon as they occur.

• checksum_level – Several options for checking up-to-dateness are available: Default is level
1.

– level 0 : Use only file timestamps

– level 1 : above, plus timestamp of successful job completion

– level 2 : above, plus a checksum of the pipeline function body

– level 3 : above, plus a checksum of the pipeline function default arguments and the addi-
tional arguments passed in by task decorators

• one_second_per_job – To work around poor file timepstamp resolution for some file sys-
tems. Defaults to True if checksum_level is 0 forcing Tasks to take a minimum of 1 second
to complete.

• runtime_data – Experimental feature: pass data to tasks at run time

• gnu_make_maximal_rebuild_mode – Defaults to re-running all out-of-date tasks. Runs
minimal set to build targets if set to True. Use with caution.

• history_file – Database file storing checksums and file timestamps for input/output files.

• verbose_abbreviated_path – whether input and output paths are abbreviated.

– level 0: The full (expanded, abspath) input or output path

– level > 1: The number of subdirectories to include. Abbreviated paths are prefixed with
[„,]/

– level < 0: Input / Output parameters are truncated to MMM letters where
verbose_abbreviated_path ==-MMM. Subdirectories are first removed to see if
this allows the paths to fit in the specified limit. Otherwise abbreviated paths are prefixed
by <???>

4.2. Modules: 271

ruffus Documentation, Release 2.6.3

pipeline_printout

ruffus.task.pipeline_printout(output_stream=None, target_tasks=[], forcedtorun_tasks=[], ver-
bose=None, indent=4, gnu_make_maximal_rebuild_mode=True,
wrap_width=100, runtime_data=None, checksum_level=None,
history_file=None, verbose_abbreviated_path=None,
pipeline=None)

Printouts the parts of the pipeline which will be run

Because the parameters of some jobs depend on the results of previous tasks, this function produces only the
current snap-shot of task jobs. In particular, tasks which generate variable number of inputs into following tasks
will not produce the full range of jobs.

:: verbose = 0 : Nothing verbose = 1 : Out-of-date Task names verbose = 2 : All Tasks (including any task
function docstrings) verbose = 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation verbose = 4 :
Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings verbose = 5 : All Jobs in Out-of-
date Tasks, (include only list of up-to-date tasks) verbose = 6 : All jobs in All Tasks whether out of date or
not

Parameters

• output_stream (file-like object with write() function) – where to print to

• target_tasks – targets task functions which will be run if they are out-of-date

• forcedtorun_tasks – task functions which will be run whether or not they are out-of-date

• verbose – level 0 : nothing level 1 : Out-of-date Task names level 2 : All Tasks (including
any task function docstrings) level 3 : Out-of-date Jobs in Out-of-date Tasks, no explanation
level 4 : Out-of-date Jobs in Out-of-date Tasks, with explanations and warnings level 5 :
All Jobs in Out-of-date Tasks, (include only list of up-to-date tasks) level 6 : All jobs in All
Tasks whether out of date or not level 10: logs messages useful only for debugging ruffus
pipeline code

• indent – How much indentation for pretty format.

• gnu_make_maximal_rebuild_mode – Defaults to re-running all out-of-date tasks. Runs
minimal set to build targets if set to True. Use with caution.

• wrap_width – The maximum length of each line

• runtime_data – Experimental feature: pass data to tasks at run time

• checksum_level – Several options for checking up-to-dateness are available: Default is
level 1. level 0 : Use only file timestamps level 1 : above, plus timestamp of successful job
completion level 2 : above, plus a checksum of the pipeline function body level 3 : above,
plus a checksum of the pipeline function default arguments and the additional arguments
passed in by task decorators

• history_file – Database file storing checksums and file timestamps for input/output files.

• verbose_abbreviated_path – whether input and output paths are abbreviated. level 0: The
full (expanded, abspath) input or output path level > 1: The number of subdirectories to in-
clude. Abbreviated paths are prefixed with [„,]/ level < 0: Input / Output parameters are
truncated to MMM letters where verbose_abbreviated_path ==-MMM. Subdirecto-
ries are first removed to see if this allows the paths to fit in the specified limit. Otherwise
abbreviated paths are prefixed by <???>

272 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

pipeline_printout_graph

ruffus.task.pipeline_printout_graph(stream, output_format=None, target_tasks=[],
forcedtorun_tasks=[], draw_vertically=True,
ignore_upstream_of_target=False,
skip_uptodate_tasks=False,
gnu_make_maximal_rebuild_mode=True,
test_all_task_for_update=True, no_key_legend=False,
minimal_key_legend=True, user_colour_scheme=None,
pipeline_name=’Pipeline:’, size=(11, 8), dpi=120,
runtime_data=None, checksum_level=None, his-
tory_file=None, pipeline=None)

print out pipeline dependencies in various formats

Parameters

• stream (file-like object with write() function) – where to print to

• output_format – [”dot”, “jpg”, “svg”, “ps”, “png”]. All but the first depends on the dot
program.

• target_tasks – targets task functions which will be run if they are out-of-date.

• forcedtorun_tasks – task functions which will be run whether or not they are out-of-date.

• draw_vertically – Top to bottom instead of left to right.

• ignore_upstream_of_target – Don’t draw upstream tasks of targets.

• skip_uptodate_tasks – Don’t draw up-to-date tasks if possible.

• gnu_make_maximal_rebuild_mode – Defaults to re-running all out-of-date tasks. Runs
minimal set to build targets if set to True. Use with caution.

• test_all_task_for_update – Ask all task functions if they are up-to-date.

• no_key_legend – Don’t draw key/legend for graph.

• minimal_key_legend – Only legend entries for used task types

• user_colour_scheme – Dictionary specifying flowchart colour scheme

• pipeline_name – Pipeline Title

• size – tuple of x and y dimensions

• dpi – print resolution

• runtime_data – Experimental feature: pass data to tasks at run time

• history_file – Database file storing checksums and file timestamps for input/output files.

• checksum_level – Several options for checking up-to-dateness are available: Default is
level 1. level 0 : Use only file timestamps level 1 : above, plus timestamp of successful job
completion level 2 : above, plus a checksum of the pipeline function body level 3 : above,
plus a checksum of the pipeline function default arguments and the additional arguments
passed in by task decorators

Logging

class ruffus.task.t_black_hole_logger
Does nothing!

4.2. Modules: 273

http://www.graphviz.org

ruffus Documentation, Release 2.6.3

class ruffus.task.t_stderr_logger
Everything to stderr

Implementation:

Parameter factories:

ruffus.task.merge_param_factory(input_files_task_globs, output_param, *extra_params)
Factory for task_merge

ruffus.task.collate_param_factory(input_files_task_globs, file_names_transform, ex-
tra_input_files_task_globs, replace_inputs, output_pattern,
*extra_specs)

Factory for task_collate

Looks exactly like @transform except that all [input] which lead to the same [output / extra] are combined
together

ruffus.task.transform_param_factory(input_files_task_globs, file_names_transform, ex-
tra_input_files_task_globs, replace_inputs, out-
put_pattern, *extra_specs)

Factory for task_transform

ruffus.task.files_param_factory(input_files_task_globs, do_not_expand_single_job_tasks, out-
put_extras)

Factory for functions which yield tuples of inputs, outputs / extras

..Note:

1. Each job requires input/output file names
2. Input/output file names can be a string, an arbitrarily nested sequence
3. Non-string types are ignored
3. Either Input or output file name must contain at least one string

ruffus.task.args_param_factory(orig_args)

Factory for functions which yield tuples of inputs, outputs / extras

..Note:

1. Each job requires input/output file names
2. Input/output file names can be a string, an arbitrarily nested sequence
3. Non-string types are ignored
3. Either Input or output file name must contain at least one string

ruffus.task.split_param_factory(input_files_task_globs, output_files_task_globs, *ex-
tra_params)

Factory for task_split

Wrappers around jobs:

ruffus.task.job_wrapper_generic(params, user_defined_work_func, register_cleanup,
touch_files_only)

run func

ruffus.task.job_wrapper_io_files(params, user_defined_work_func, register_cleanup,
touch_files_only, output_files_only=False)

run func on any i/o if not up to date

274 Chapter 4. Reference:

ruffus Documentation, Release 2.6.3

ruffus.task.job_wrapper_mkdir(params, user_defined_work_func, register_cleanup,
touch_files_only)

Make missing directories including any intermediate directories on the specified path(s)

Checking if job is update:

ruffus.task.needs_update_check_modify_time(*params, **kwargs)
Given input and output files, see if all exist and whether output files are later than input files Each can be

1.string: assumed to be a filename “file1”

2.any other type

3.arbitrary nested sequence of (1) and (2)

ruffus.task.needs_update_check_directory_missing(*params, **kwargs)

Called per directory: Does it exist? Is it an ordinary file not a directory? (throw exception

Exceptions and Errors

4.2.2 ruffus.proxy_logger

Create proxy for logging for use with multiprocessing

These can be safely sent (marshalled) across process boundaries

Example 1

Set up logger from config file:

from proxy_logger import *
args={}
args["config_file"] = "/my/config/file"

(logger_proxy,
logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,

"my_logger", args)

Example 2

Log to file "/my/lg.log" in the specified format (Time / Log name / Event type / Message).

Delay file creation until first log.

Only log Debug messages

Other alternatives for the logging threshold (args["level"]) include

• logging.DEBUG

• logging.INFO

• logging.WARNING

• logging.ERROR

4.2. Modules: 275

ruffus Documentation, Release 2.6.3

• logging.CRITICAL

from proxy_logger import *
args={}
args["file_name"] = "/my/lg.log"
args["formatter"] = "%(asctime)s - %(name)s - %(levelname)6s - %(message)s"
args["delay"] = True
args["level"] = logging.DEBUG

(logger_proxy,
logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,

"my_logger", args)

Example 3

Rotate log files every 20 Kb, with up to 10 backups.

from proxy_logger import *
args={}
args["file_name"] = "/my/lg.log"
args["rotating"] = True
args["maxBytes"]=20000
args["backupCount"]=10
(logger_proxy,
logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,

"my_logger", args)

To use:

(logger_proxy,
logging_mutex) = make_shared_logger_and_proxy (setup_std_shared_logger,

"my_logger", args)

with logging_mutex:
my_log.debug('This is a debug message')
my_log.info('This is an info message')
my_log.warning('This is a warning message')
my_log.error('This is an error message')
my_log.critical('This is a critical error message')
my_log.log(logging.DEBUG, 'This is a debug message')

Note that the logging function exception() is not included because python stack trace information is
not well-marshalled (pickled) across processes.

Proxies for a log:

ruffus.proxy_logger.make_shared_logger_and_proxy(logger_factory, logger_name, args)
Make a logging object called “logger_name” by calling logger_factory(args)

This function will return a proxy to the shared logger which can be copied to jobs in other processes, as well as
a mutex which can be used to prevent simultaneous logging from happening.

Parameters

• logger_factory – functions which creates and returns an object with the logging interface.
setup_std_shared_logger() is one example of a logger factory.

276 Chapter 4. Reference:

http://docs.python.org/library/pickle.html
http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html

ruffus Documentation, Release 2.6.3

• logger_name – name of log

• args – parameters passed (as a single argument) to logger_factory

Returns a proxy to the shared logger which can be copied to jobs in other processes

Returns a mutex which can be used to prevent simultaneous logging from happening

Create a logging object

ruffus.proxy_logger.setup_std_shared_logger(logger_name, args)
This function is a simple around wrapper around the python logging module.

This logger_factory example creates logging objects which can then be managed by proxy via
ruffus.proxy_logger.make_shared_logger_and_proxy()

This can be:

•a disk log file

•a automatically backed-up (rotating) log.

•any log specified in a configuration file

These are specified in the args dictionary forwarded by make_shared_logger_and_proxy()

Parameters

• logger_name – name of log

• args – a dictionary of parameters forwarded from
make_shared_logger_and_proxy()

Valid entries include:

"level"
Sets the threshold for the logger.

"config_file"
The logging object is configured from this configuration file.

"file_name"
Sets disk log file name.

"rotating"
Chooses a (rotating) log.

"maxBytes"
Allows the file to rollover at a predetermined size

"backupCount"
If backupCount is non-zero, the system will save old log files by appending the
extensions .1, .2, .3 etc., to the filename.

"delay"
Defer file creation until the log is written to.

"formatter"
Converts the message to a logged entry string. For example,

"%(asctime)s - %(name)s - %(levelname)6s - %(message)s"

4.2. Modules: 277

http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html#filehandler
http://docs.python.org/library/logging.html#rotatingfilehandler
http://docs.python.org/library/logging.html#configuration-file-format
http://docs.python.org/library/logging.html#logging.Handler.setLevel
http://docs.python.org/library/logging.html#configuration-file-format
http://docs.python.org/library/logging.html#rotatingfilehandler
http://docs.python.org/library/logging.html#formatter-objects

ruffus Documentation, Release 2.6.3

278 Chapter 4. Reference:

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

279

ruffus Documentation, Release 2.6.3

280 Chapter 5. Indices and tables

PYTHON MODULE INDEX

r
ruffus.proxy_logger, 273

281

	Start Here:
	Installation
	Ruffus Manual: List of Chapters and Example code
	Chapter 1: An introduction to basic Ruffus syntax
	Chapter 2: Transforming data in a pipeline with @transform
	Chapter 3: More on @transform-ing data
	Chapter 4: Creating files with @originate
	Chapter 5: Understanding how your pipeline works with pipeline_printout(...)
	Chapter 6: Running Ruffus from the command line with ruffus.cmdline
	Chapter 7: Displaying the pipeline visually with pipeline_printout_graph(...)
	Chapter 8: Specifying output file names with formatter() and regex()
	Chapter 9: Preparing directories for output with @mkdir()
	Chapter 10: Checkpointing: Interrupted Pipelines and Exceptions
	Chapter 11: Pipeline topologies and a compendium of Ruffus decorators
	Chapter 12: Splitting up large tasks / files with @split
	Chapter 13: @merge multiple input into a single result
	Chapter 14: Multiprocessing, drmaa and Computation Clusters
	Chapter 15: Logging progress through a pipeline
	Chapter 16: @subdivide tasks to run efficiently and regroup with @collate
	Chapter 17: @combinations, @permutations and all versus all @product
	Chapter 18: Turning parts of the pipeline on and off at runtime with @active_if
	Chapter 19: Signal the completion of each stage of our pipeline with @posttask
	Chapter 20: Manipulating task inputs via string substitution using inputs() and add_inputs()
	Chapter 21: Esoteric: Generating parameters on the fly with @files
	Chapter 22: Esoteric: Running jobs in parallel without files using @parallel
	Chapter 23: Esoteric: Writing custom functions to decide which jobs are up to date with @check_if_uptodate
	Appendix 1: Flow Chart Colours with pipeline_printout_graph(...)
	Appendix 2: How dependency is checked
	Appendix 3: Exceptions thrown inside pipelines
	Appendix 4: Names exported from Ruffus
	Appendix 5: @files: Deprecated syntax
	Appendix 6: @files_re: Deprecated syntax using regular expressions
	Chapter 1: Python Code for An introduction to basic Ruffus syntax
	Chapter 1: Python Code for Transforming data in a pipeline with @transform
	Chapter 3: Python Code for More on @transform-ing data
	Chapter 4: Python Code for Creating files with @originate
	Chapter 5: Python Code for Understanding how your pipeline works with pipeline_printout(...)
	Chapter 7: Python Code for Displaying the pipeline visually with pipeline_printout_graph(...)
	Chapter 8: Python Code for Specifying output file names with formatter() and regex()
	Chapter 9: Python Code for Preparing directories for output with @mkdir()
	Chapter 10: Python Code for Checkpointing: Interrupted Pipelines and Exceptions
	Chapter 12: Python Code for Splitting up large tasks / files with @split
	Chapter 13: Python Code for @merge multiple input into a single result
	Chapter 14: Python Code for Multiprocessing, drmaa and Computation Clusters
	Chapter 15: Python Code for Logging progress through a pipeline
	Chapter 16: Python Code for @subdivide tasks to run efficiently and regroup with @collate
	Chapter 17: Python Code for @combinations, @permutations and all versus all @product
	Chapter 20: Python Code for Manipulating task inputs via string substitution using inputs() and add_inputs()
	Chapter 21: Esoteric: Python Code for Generating parameters on the fly with @files
	Appendix 1: Python code for Flow Chart Colours with pipeline_printout_graph(...)

	Overview:
	Cheat Sheet
	Pipeline functions
	drmaa functions
	Installation
	Design & Architecture
	Major Features added to Ruffus
	Fixed Bugs
	New Object orientated syntax for Ruffus in Version 2.6
	Worked Example for New Object orientated syntax for Ruffus in Version 2.6
	Python Code for: New Object orientated syntax for Ruffus in Version 2.6
	Where I see Ruffus going
	In up coming release:
	Future Changes to Ruffus
	Planned Improvements to Ruffus
	Implementation Tips
	Implementation notes
	FAQ
	Glossary
	Hall of Fame: User contributed flowcharts
	Why Ruffus?

	Examples
	Construction of a simple pipeline to run BLAST jobs
	Part 2: A slightly more practical pipeline to run blasts jobs
	Ruffus code
	Ruffus code
	Example code for FAQ Good practices: ``What is the best way of handling data in file pairs (or triplets etc.)?''

	Reference:
	Decorators
	Modules:

	Indices and tables
	Python Module Index

